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Metaquerying is a data mining technique by which hidden
dependencies among several database relations can be dis-
covered in the form of Datalog-like rules, and this tech-
nique has already been successfully applied to several real-
world application domains. Unfortunately, recent papers
have shown that performing metaquerying turns out to be
in general quite demanding from the computational view-
point. The aim of this paper is to illustrate techniques by
which metaquerying can be answered as efficiently as possi-
ble. Therefore, we first provide some new results regarding
the computation of the number of substitutions for a given
metaquery. In particular, an important source of complex-
ity of implementing metaquerying relies in the exponential
number of variable substitutions potentially to be analyzed
to compute results, many of which turn out to be actually re-
dundant. Redundancy checks are therefore illustrated and ex-
ploited below in order to minimize the computational cost
to be paid to implement metaquerying. Metaquerying result
construction algorithms are then given.
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1. Introduction

It is frequent nowadays for organizations to pos-
sess huge amounts of information stored in databases
to be exploited to extract useful knowledge for busi-
ness and management support. The data mining re-
search area is supposed to provide tools for the dis-
covery of valuable knowledge in such huge data re-
sources [12]. Among data mining methods that have
been in recent years defined and exploited, the meta-
querying technique [21,16,7,2,3,8,6] seems to be a par-
ticularly promising one for mining relational and de-
ductive databases.

Metaqueries serve as a generic description of the
class of patterns to be discovered. Notably, differently

from many other mining techniques, patterns discov-
ered using metaqueries can link information from sev-
eral tables in databases. Moreover, such patterns are
first-order (metaquery results take the form of Datalog-
like rules), while most machine-learning systems can
only learn propositional patterns and work on a single
relation. Metaqueries can be specified by human ex-
perts or alternatively, they can be automatically gener-
ated from the database schema.

Intuitively, a metaquery has the form

T ← L1, ..., Lm

where T and Li are literal schemes Qi(Y1, ..., Yni).
The predicate variable Qi can be instantiated to a pred-
icate symbol representing a relation in the database.
The instantiation must be done in a way which is con-
sistent with the variable names.

For example (taken from [21]), let P ,Q, and R be
variables for predicates, then the metaquery

R(X, Z)← P (X, Y ), Q(Y, Z)

specifies that the patterns to be discovered are relation-
ships of the form

r(X, Z)← p(X, Y ), q(Y,Z)

where p, q, and r are specific database relations. One
possible result of this metaquery is the pattern (say,
with confidence 0.93):

speaks(X, Z)← citizen(X,Y ), language(Y, Z)

This means that out of all pairs (X, Z) that satisfy the
body of the above rule, 93% satisfy the left-hand side.

Thus, an answer to a metaquery is a rule accompa-
nied by indices that indicate its plausibility degree. In
[7], for example, each rule in the answer is supplied
with support and the confidence. Index thresholds are
provided by the user. As with other mining techniques,
indices are used to avoid presenting negligible infor-
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mation to the user and to cut off the search space by
early detection of low index values.

Unfortunately metaquerying brings, along with a
vast applicability and usefulness, also a very demand-
ing computational behaviour. The computational com-
plexity characterization of metaquerying problems has
been provided in [2,3]. In that paper, the authors show
that, from the computational viewpoint, metaquery-
ing is, in most cases, a very demanding task (com-
plexity figures lying in the general case, between NP
and NPPP ) and, therefore, any metaquery computation
may require significant resources.

And, in particular, the number of instantiantions to
be analyzed to construct the result of evaluating a meta-
query is generally very large. In the following we prove
that the problem of computing the number of such in-
stantiations is #P-hard in general. Notably, however,
several of such instantiations are, so as to say, redun-
dant for the purposes of the evaluation, as they are es-
sentially the same instantiation. It is therefore inter-
esting to be able to discard those redundant instanti-
ation in the first place. We point out that eliminating
redundant consistent instantiations has a two-fold use-
fulness. First of all, it speeds-up result construction as,
after generating and storing consistent instantiations
in main memory, the metaquery system must compute
values of indexes scored on the database by using the
expensive join operator. Thus, filtering out redundant
consistent instantiations will minimize the number of
such evaluations. Second, it avoids presenting to the
user many times the same kind of information.

In order to obtain such evaluation speed-up, this pa-
per reports a number of results that allow to efficiently
discard redundant instantiations of the metaquery to
be answered. Such results form the basis upon which
a metaquerying evaluation algorithm can be designed,
which is also illustrated in the following.

In more detail, such results use the idea of exploit-
ing a form of isomorphism among variable substitu-
tions which is conducive to the definition of redun-
dant instantiations. Such notion of isomorphism is then
proved to reduce to the well-known graph isomor-
phism problem. Therefore, state-of-the-art algorithms
devised to solve this latter problem can be adopted for
the metaquery evaluation purposes.

The plan of the paper is, therefore, as follows.
Section 2 provides the definitions of metaquery and

of metaquery instantiation, and defines metaquery in-
dexes.

In Section 3, the computational complexity of the
problem of counting the number of instantiations of a

given metaquery is taken into account. Indeed, any al-
gorithm which can enumerate all metaquery instanti-
ations should be able to count them as efficiently as
well. In particular, it is shown that the problems of
computing the number of instantiations of a metaquery
scoring enough value for an index and that of comput-
ing the number of instantiations of a metaquery that
are consistent w.r.t. the database schema at hand, are
#P-complete or #P-hard depending on the considered
index.

In Section 4, the concepts of redundancy of two in-
stantiations, metaquery variant, and redundancy of two
metaquery variants are introduced. Intuitively, two in-
stantiations are redundant if the are syntactically equiv-
alent, while a variant of a metaquery Q is the meta-
query obtained from Q by permutation of ordinary
variables of Q and possibly adding new ordinary vari-
ables. Furthermore, two metaquery variants are defined
to be redundant if the sets of their instantiations are
equivalent via redundancy. Interestingly, it is proved
that the set of all non redundant instantiations of a
given metaquery is equivalent (via redundancy) to the
union of the sets of all non redundant instantiations of
its non redundant variants. This result has a practical
relevance, as it suggests that in order to compute the
consistent instantiations of a metaquery, it is better to
compute first all its non redundant metaquery variants
and then to find the consistent instantiations of these
variants.

Section 5 addresses the problem of deciding if
two metaquery variants are redundant. In particu-
lar, it is shown that this problem reduces to the
graph isomorphism problem. This result makes redun-
dancy checking between metaquery variants effective
by using well-known algorithms for solving graph-
isomorphism. Furthermore, the concept of autoset is
introduced and it is shown how to exploit it in order to
speed-up the above checking.

In Section 6, the problem of enumerating the set of
all non redundant variants of a given metaquery is con-
sidered. In particular, it is shown how to enumerate ef-
ficiently certain subsets, as, for example, all the renam-
ing of a metaquery – where a renaming is a particular
type of metaquery variant.

In Section 7, the algorithm for enumerating all the
non redundant instantiations of a given metaquery is
presented and correctness of the algorithm is formally
proved.

Finally, Section 8 reports conclusions.
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2. Metaquerying

2.1. Metaqueries

We provide first the definition of relation and database
schema and then formally define metaqueries.

A relation schema R = (p,A1, D1, . . . , An, Dn),
of arity n, consists of a relation name p and of a se-
quence of attribute names A1, . . . , An with associated
countable sets of constants, or domains, D1, . . . , Dn,
also denoted by dom(A1), . . . ,dom(An), respec-
tively. A relation r on a relation schema R =
(p,A1, D1, . . . , An, Dn) is a finite subset of dom(A1)×
. . .× dom(An).

A database schema DBS is a set of relation
schemas. A database DB = {r1, . . . , rn} on a
database schema DBS = {R1, . . . , Rn} is a set of re-
lations ri on Ri (1 ≤ i ≤ n). We say that a database
schema (a database resp.) is untyped if the attributes
occurring in the database schema (in its associated
database schema resp.) have the same domain. Other-
wise, we say that it is typed.

For example, Figure 1 shows the database DB1 on
the database schema

DBS1 = {UsCaSch,CaTeSch, UsPTSch}

where

UsCaSch = (UsCa, user,Users,

carrier,Companies)

CaTeSch = (CaTe, carrier,Companies,

technology,Technologies)

UsPTSch = (UsPT , user,

Users, phone type,Technologies)

and, Users, Companies, and Technologies are the fol-
lowing domains:

Users = String

Companies = {Tim, Vodafone, Tre}

Technologies = {ETACS, GSM900,

GSM1800, GSM1900, UMTS}

Let R = (p,A1, D1, . . . , An, Dn) be a relation
schema. An atom L on R is an expression of the
form p(X1, . . . , Xn), such that Xi is either an ordi-
nary variable or a constant, for i = 1, . . . , n. The

domain dom(Xi, L) of Xi in L, is dom(Ai), for
i = 1, . . . , n.

Assume a database DB and a database schema
DBS have been fixed. As stated above, a metaqueryQ
is a second-order template stating the form of the pat-
tern to be discovered [21]. The template has the form

T ← L1, ..., Lm (1)

where T and Li are literal schemes. Each literal
scheme Li has the form Q(Y1, ..., Yn) where Q is ei-
ther a predicate (second order) variable or a relation
symbol, and each Yj (1 ≤ j ≤ n) is either an ordi-
nary (first order) variable or a constant symbol. If Q is
a predicate variable, then Q(Y1, ..., Yn) is called a re-
lation pattern of arity n, otherwise it is called an atom
of arity n. The right-hand-side L1, ..., Lm is called the
body of the metaquery, while T is called the head of
the metaquery. A metaquery is called pure if each rela-
tion pattern with the same predicate variable has same
arity.

Intuitively, given a database DB, answering a meta-
query Q on DB amounts to finding all substitutions σ
of relation patterns appearing in Q by atoms having as
predicate names relations in DB, such that the Horn
rule σ(Q) (obtained by applying σ toQ) encodes a de-
pendency between the atoms in its head and body, that
holds in DB with a certain degree of plausibility. The
plausibility here is defined in terms of indexes which
we will define shortly.

Let Q be a metaquery and DB a database on the
schema DBS. Let var(Q), pv(Q), ls(Q), and rep(Q)

UsCa

user carrier
Tom S. Vodafone
Tom S. Tim

Laura D. Vodafone
CaTe

carrier technology
Tim ETACS
Tim GSM 900
Tim GSM 1800

Vodafone GSM 900
Vodafone GSM 1800

Tre UMTS
UsPT

user phone type
Tom S. GSM 900
Tom S. GSM 1800

Laura D. GSM 900

Fig. 1. The relations UsCa, CaTe, and UsPT of DB1
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denote the set of variables (both predicate and ordi-
nary), the set of predicate variables, the set of literal
schemes, and the set of relation patterns occurring in
Q, respectively. Moreover, let rel(DB) denote the set
of relation names of DBS and ato(DB) the set of
atoms on a relation schema of DBS.

2.2. Instantiations

Semantics is defined via metaquery instantiations:
an instantiation type specifies how relation patterns
can be instantiated, turning a metaquery to an ordinary
Horn rule over the given database. Next, we recall the
three different types of metaquery instantiations de-
fined in [2].

Definition 2.1 (Instantiation) Let Q be a metaquery
and DB a database. An instantiation (onQ and DB) is
a mapping σ : rep(Q)→ ato(DB), whose restriction
σ′ : pv(Q)→ rel(DB) is functional.

The condition above says that predicate names of Q
are consistently substituted with relation names from
DB.

Definition 2.2 (Type-0 instantiation) LetQ be a pure
metaquery. An instantiation σ is type-0 if for any rela-
tion pattern L and atom A, σ(L) = A implies that L
and A have the same list of arguments.

That is, under type-0 semantics, each predicate vari-
able is always matched to a relation with the same arity
and ordinary variables are left untouched. As an exam-
ple, consider the database DB1 shown in Figure 1 and
the metaquery

R(X, Z)← P (X, Y ), Q(Y,Z) (2)

A possible type-0 instantiation for Q is

σ = {〈R(X, Z), UsPT(X,Z)〉,

〈P (X, Y ), UsCa(X, Y )〉,

〈Q(Y,Z), CaTe(Y, Z)〉}

which yields the following Horn rule when applied to
Q:

UsPT(X,Z)← UsCa(X, Y ), CaTe(Y,Z)

Definition 2.3 (Type-1 instantiation) LetQ be a pure
metaquery. An instantiation σ is type-1 if for any rela-
tion pattern L and atom A, σ(L) = A implies that the
arguments of A are obtained from arguments of L by
permutation.

user phone type model
Tom S. GSM 900 Nokia 6150
Tom S. GSM 1800 Nokia 6150

Laura D. GSM 900 Bosch 607

Fig. 2. The new extension for the relation UsPT

With type-1 instantiations, variable ordering within re-
lation patterns does not matter. As an example, under
this semantics, the metaquery (2) detects relationships
among DB1 relations in a way that is independent of
variable ordering in relation patterns, and, among oth-
ers, both the following Horn rules can be obtained.

UsPT(X,Z)← UsCa(X, Y ), CaTe(Y,Z)

UsPT(X, Z)← UsCa(Y,X), CaTe(Y,Z)

The third type of instantiation takes a step further by
allowing a relation pattern of arity k to be matched with
an atom of arity k′, with k′ ≥ k, padding “remaining”
arguments to free variables:

Definition 2.4 (Type-2 instantiation) LetQ be a meta-
query. An instantiation σ is type-2 if for any relation
pattern L and atom A, σ(L) = A implies the follow-
ing:

– the arity k′ of A is greater-than or equal-to the
arity of L;

– k of the arguments of A coincide with the k argu-
ments of L, possibly occurring in different posi-
tions;

– the remaining k′−k arguments of A are variables
not occurring elsewhere in the instantiated rule.

With type-2 instantiations we can express interesting
patterns disregarding how many extra attributes a phys-
ical relation has. Should the relation UsPT be defined
with an additional attribute, as in Figure 2.2, the meta-
query (2) can be instantiated, using a type-2 instantia-
tion, to

UsPT(X,Z, T )← UsCa(Y, X), CaTe(Y, Z)

Note that a type-0 instantiation can be viewed as a
type-1 instantiation where the chosen permutation of
relations’s attributes is the identity, whereas a type-1
instantiation can be seen also as a type-2 instantiation,
where the arity of the atoms matches the arity of the
relation patterns they are substituted for. Note, more-
over, that type-2 instantiations may apply to any meta-
query, while type-0 and type-1 instantiations require
pure metaqueries.

Next we define the concept of consistent instantia-
tion w.r.t. the data base schema.



F. Angiulli / Enumerating Consistent Metaquery Instantiations 5

Definition 2.5 (Consistent instantiation) Let DB be
a database on a database schema DBS, let Q be a
metaquery, let T ∈ {0, 1, 2}, and let σ be a type-T
instantiation of Q on DB:

– Let X be an ordinary variable occurring into Q.
We say that σ(Q) is consistent w.r.t. X and DBS
if, for each pair X ′, X ′′ of distinct occurrences of
X into σ(Q), respectively in the atoms L′ and L′′,
we have that dom(X ′, L′) = dom(X ′′, L′′).

– Let c be a constant occurring into Q. We say that
σ(Q) is consistent w.r.t. c and DBS if, for each
occurrence of c into σ(Q) in an atom L, we have
that c ∈ dom(c, L).

– We say that σ is consistent w.r.t. DBS if, for each
ordinary variable or constant V of Q, σ(Q) is
consistent w.r.t. V and DBS.

For example, consider the metaquery Q = R(X, Z)←
P (X,Y ), Q(Y, Z), the two following type-1 instantia-
tions of Q on DB1:

σ1 = {〈R(X, Z), UsCa(Z, X)〉,

〈P (X, Y ), CaTe(X,Y )〉,

〈Q(Y, Z), UsPT (Y, Z)〉}

σ2 = {〈R(X, Z), UsCa(Z, X)〉,

〈P (X, Y ), CaTe(X,Y )〉,

〈Q(Y, Z), UsPT (Z, Y )〉}

and the metaqueries σ1(Q):

UsCa(Z,X)← CaTe(X,Y ), UsPT (Y, Z)

and σ2(Q):

UsCa(Z, X)← CaTe(X, Y ), UsPT (Z, Y ).

Then σ1 is not consistent w.r.t. DBS1 as dom(Z,
UsCa(Z, X)) = Users and dom(Z, UsPT (Y, Z))
= Technologies, while σ2 is consistent w.r.t. DBS1.

2.3. Metaquery indexes

In data mining applications one is generally inter-
ested in discovering patterns of data that are “well-
supported” in the analyzed data sets. In other words,
it is not typically required for a discovered pattern to
be true for the entire given data set, but for a signifi-
cant subset thereof. This idea is embedded in the def-
inition of metaquery indexes. In the literature, several

metaquery index definitions are found, such as support,
confidence, base and strength [7,8,16]. In fact, support
is similar to base and confidence is similar to strength
[7]. Therefore, in the analysis that follows, we shall use
support, confidence and another index we find useful.
For any set F , let |F | denote its size.

Definition 2.6 (Fraction) Let R and S be two sets of
relations. Then the fraction of R in S is:

R ↑ S =
|πatt(R)(J(R) ./ J(S))|

|J(R)|

where att(S) denotes the set of attributes and J(S) de-
notes the natural join of the relations in S. In particu-
lar, in every case where |πatt(R)(J(R) ./ J(S))| = 0,
R ↑ S is defined equal to 0.

Definition 2.7 (Confidence, Cover and Support) Let
r be a Horn rule and let DB be a database. Let h(r)
and b(r) denote the sets of relations of DB occurring
in the head and in the body of r, respectively. Then (i)
the confidence of r is cnf(r) = b(r) ↑ h(r), (ii) the
cover of r is cvr(r) = h(r) ↑ b(r), (iii) the support of
r is sup(r) = maxa∈b(r)({a} ↑ b(r)). In the follow-
ing, the set of indexes {cnf, cvr, sup} will be denoted
I.

Given a rule r, the indices cnf(r) and sup(r) are
equivalent to the notions of confidence and support de-
fined in [7]. A detailed discussion of support and con-
fidence for metaqueries can be found in [7,8]. The no-
tion of cover has been introduced in [2], and it serves
the purpose of measuring how many tuples are there
that satisfy the head, satisfy also the body.

3. On the Complexity of Answering a Metaquery

In general, given a metaqueryQ and a database DB
on a database schema DBS, we are interested in ob-
taining all the instantiations σ of Q on DB such that
the Horn rule σ(Q) scores an adequate value of cover,
confidence and support. That is, we search for the set
of instantiations of a metaquery, defined next.

Definition 3.1 (Set of instantiations) Let T ∈ {0, 1,
2}, let Q be a metaquery, let DB be a database, let
I ∈ I and let k be a rational number in [0, 1). We define
Σ(Q, DB, I, k, T ) as the set of type-T instantiations σ
on Q and DB such that I(σ(Q)) > k on DB.
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When the database schema DBS is typed, it make
sense to search for the set of consistent instantiations
of a metaquery, defined as follows.

Definition 3.2 (Set of consistent instantiations) Let
Q be a metaquery, let DBS be a database schema, and
let T ∈ {0, 1, 2}. We denote by Σc(Q, DBS, T ) the
set consisting of by all the type-T instantiations σ ofQ
such that σ(Q) is consistent w.r.t. DBS.

Given the definitions above, the following interesting
complexity problems are then obtained:

Problem 3.3 Let T ∈ {0, 1, 2} be an instantiation type
and let I ∈ I be an index. Let DBS denote a database
schema, let DB denote a database on DBS, Q denote
a metaquery, and k ∈ [0, 1) rational threshold value.
Then:

– The complexity of the metaquery problem

〈DB,Q, I, k, T 〉,

is the complexity, measured in the size of DB,
Q and k, of deciding if Σ(Q, DB, I, k, T ) is
nonempty (also defined in [2,3]).

– The complexity of the metaquery problem

〈DB,Q, T 〉,

is the complexity, measured in the size of DB
and DBS, of deciding if Σc(Q, DBS, T ) is
nonempty (also defined in [8]).

– The complexity of the metaquery problem

#〈DB,Q, I, k, T 〉,

is the complexity, measured in the size of DB,
Q and k, of computing the cardinality of the set
Σ(Q, DB, I, k, T ).

– The complexity of the metaquery problem

#〈DBS,Q, T 〉,

is the complexity, measured in the size of DB
and DBS, of computing the cardinality of the set
Σc(Q, DBS, T ).

It is proved in [2,3] that the complexity of 〈DB,Q, I ,
k, T 〉 is NP-complete for I ∈ {cvr, sup} and is
NPPP-complete for I = cnf . Thus, the problem
#〈DB,Q, I , k, T 〉 is NP-hard. Furthermore, it is
stated in [8] that the problem 〈DBS,Q, T 〉 is NP-

complete if DBS is typed, while it is solvable in
quadratic time and logarithmic space if DBS is un-
typed. Thus, when DBS is typed, also the prob-
lem #〈DBS,Q, T 〉 is NP-hard. Next, we provide
more strict bounds to the computational complex-
ity of the counting problems #〈DB,Q, I, k, T 〉 and
#〈DBS,Q, T 〉.

First, we briefly recall some definitions of compu-
tational complexity theory related to counting and the
definition of conjunctive query. For more on complex-
ity theory the reader is referred to [13].

A counting Turing machine (CTM) is a nondeter-
ministic Turing machine whose output for a given in-
put string is the number of accepting computations for
that input. The class #P is the set of all functions
that are computable by polynomial-time CTMs [20]. A
problem is defined #P-hard and #P-complete in the
usual manner. The following form of reduction is used
to prove #P-hardness: a parsimonious transformation
is a polynomial transformation f from problem X to
problem Y such that, if #(X,x) is defined to be the
number of solutions that instance x has in the problem
X , then #(X, x) = #(Y, f(x)).

A conjunctive query q is a set of atoms q =
{p1(X1), . . . , pn(Xn)}, where X1, . . . ,Xn is a list
of variables and/or constants. Let DB be a database.
The problem of satisfying a conjunctive query (the
Boolean Conjunctive Query satisfaction problem, or
BCQ) is the problem of deciding whether there exists
a substitution ρ for the variables in X1, . . . ,Xn sat-
isfying q, i.e. such that, for each i = 1, . . . , n, ρ(Xi)
is a tuple occurring in the relation pi of DB. The set
ρ(q) = {pi(ρ(Xi)) | 1 ≤ i ≤ n} is called ground
instance of q. The problem of counting the number of
substitutions satisfying a conjunctive query is known
to be #P-complete.

Theorem 3.4 The complexity of

1. #〈DB,Q, I, k, T 〉, and
2. #〈DBS,Q, T 〉

is #P-hard.

Proof. We show a transformation from BCQ to 〈DB,
Q, I, k, T 〉 and a transformation from BCQ to 〈BDS,
Q, T 〉 preserving the number of solutions. Let q =
{p1(X1), . . . , pn(Xn)} be a conjunctive query on the
database DB. W.l.o.g. we can assume that p1, . . . , pn

are distinct relation names occurring in DB, that X =
X1 ∪ . . . ∪Xn contains only variables, and that each
Xi (1 ≤ i ≤ n) does not contain duplicate vari-
ables. Let Ri = (pi, Ai,1, . . . , Ai,ri) be the relation
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schema of the relation pi, let di be the number of tu-
ples in the relation pi, and let Xi = Xi,1, . . . , Xi,ri ,
for i = 1, . . . , n.

Let Y1, . . . , Ym the distinct variables occurring in X.
For each Y ∈ X, let CY denote the set∪

Xi,j=Y

πAi,j (pi),

i.e. the set of the values that the variable Y can assume
on the database DB (we assume that duplicate values
are eliminated from CY ).

(1) Now we build a metaqueryQBCQ and a database
DBBCQ associated to q and DB. Let e0 = n, e1 =
e0+|CY1 |, . . ., em = em−1+|CYm | be integer numbers.
Let fi : CYi 7→ [ei−1 + 1, ei] be a bijection between
the set of values CYi to the set of integers in the interval
[ei−1 + 1, ei], for i = 1, . . . , m.

The database DBBCQ consists of the relations
ti,k = {〈i, fXi,1(ui,k,1), . . . , fXi,ri

(ui,k,ri)〉}, for i =
1, . . . , n, k = 1, . . . , di, where 〈ui,k,1, . . . , ui,k,ri〉 is
the kth tuple of the relation pi of DB, and of the rela-
tions gi = {〈ei−1 + 1〉, . . . , 〈ei〉}, for i = 1, . . . , m.

The metaquery QBCQ is

Q1(1,X1)← Q1(1,X1), Q2(2,X2), . . . ,

Qn(n,Xn), g1(Y1), . . . , gm(Ym)

Let ρ be a substitution satisfying q, and let ρ(q) =
{p1(x1), . . . , pn(xn)} be a ground instance of q. Con-
sider the type-0 (hence also type-1 and type-2) instan-
tiation of QBCQ on DBBCQ

σρ = {〈Q1(1,X1), t1,j1(1,X1)〉, . . . ,

〈Qn(Xn), tn,jn
(n,Xn)〉}

where j1, . . . , jn are such that xi = 〈ui,ji,1, . . . , ui,ji,ri〉,
for i = 1, . . . , n (that is xi is the jith tuple of the rela-
tion pi of DB). As ρ is a substitution satisfying q, and
the unique tuple of the relation ti,ji is obtained from xi

through the bijections f1, . . . , fm, then the relation

t1,j1(1,X1) 1 . . . 1 tn,jn(n,Xn) 1

1 g1(Y1) 1 . . . 1 gm(Ym)

is nonempty, and cnf(σρ(QBCQ)), cvr(σρ(QBCQ)),
and sup(σρ(QBCQ)) are equal to 1 on DBBCQ.

Vice versa, consider an instantiation σ of QBCQ on
DBBCQ. Because of the presence of the constant i in
Qi(i,Xi) (1 ≤ i ≤ n), σ maps Qi(i,Xi) to a re-
lation ti,ji (1 ≤ ji ≤ di) of DBBCQ. Furthermore,
as g(Yi) belongs to QBCQ, to be cnf(σρ(QBCQ)),
cvr(σρ(QBCQ)), and sup(σρ(QBCQ)) non zero, it

is the case that σ maps each Xi into itself, i.e. that
none of the Xi arguments is permuted. Thus, xi =
〈f−1

Xi,1
(ui,ji,1), . . . , f

−1
Xi,ri

(ui,ji,ri
)〉 is a tuple of the re-

lation pi of DB (1 ≤ i ≤ n) and the substitution
ρσ for the variables Y1, . . . , Ym such that ρσ(q) =
{p1(x1, . . . ,xn)} satisfies q.

(2) Now we build a metaqueryQBCQ and a database
scheme DBSBCQ associated to q and DB. Let Si

denote a new distinct type having domain {i}, for
i = 1, . . . , n + m, and let Ti,c denote a new distinct
type such that {1, . . . , n+m} are not in the domain of
Ti,c, for i = 1, . . . ,m, c ∈ CYi .

The database scheme DBSBCQ consists of the re-
lation schemes

– Ti,j = (ti, Bi,j,0, Bi,j,1, . . . , Bi,j,ri) :
with typ(Bi,j,0) = Si and typ(Bi,j,k) =
Ti,ui,j,k

, where 〈ui,j,1, . . . , ui,j,ri〉 denotes the jth
tuple of the relation pi of DB, for i = 1, . . . , n,
j = 1, . . . , di, k = 1, . . . , ri.

– Gi,c = (gi,c, Ci, Ci,c) :
with typ(Ci) = Sn+i and typ(Ci,c) = Ti,c, for
i = 1, . . . , m, c ∈ CYi

The metaquery QBCQ is

Q1(1,X1)← Q1(1,X1), . . . , Qn(n,Xn),

G1(n + 1, Y1), . . . , Gm(n + m,Ym)

Let ρ be a substitution satisfying q, and let ρ(q) =
{p1(x1), . . . , pn(xn)} be a ground instance of q. Con-
sider the type-0 (hence also type-1 and type-2) consis-
tent instantiation of QBCQ on DBSBCQ

σρ = {〈Q1(1,X1), t1,j1(1,X1)〉, . . . ,

〈Qn(Xn), tn,jn(n,Xn)〉,

〈G1(n + 1, Y1), g1,c(n + 1, C1,c)〉, . . . ,

〈Gm(n + m,Ym), gm(n + m,Ym)〉}

where j1, . . . , jn are such that xi = 〈ui,ji,1, . . .,
ui,ji,ri〉, for i = 1, . . . , n (that is xi is the jith tuple of
the relation pi of DB). As ρ is a substitution satisfy-
ing q, then σρ is a consistent instantiation ofQBCQ on
DBSBCQ.

Vice versa, consider a consistent instantiation σ of
QBCQ on DBSBCQ. Because of the presence of the
constant i in Qi(i,Xi) and n+j in Gj(n+j, Yj) (1 ≤
i ≤ n, 1 ≤ j ≤ m), σ maps Qi(i,Xi) to a relation ti,ki

(1 ≤ ki ≤ di) and Gj(n+j, Yj) to a relation gj,cj
(n+

j, Yj) (cj ∈ CYj ) of DBBCQ. Consequently, it is the
case that σ maps each Xi into itself, i.e. that none of the
Xi arguments is permuted. Thus, xi = 〈cj1 , . . . , cjn)〉
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is a tuple of the relation pi of DB (1 ≤ i ≤ n) and the
substitution ρσ for the variables Y1, . . . , Ym such that
ρσ(q) = {p1(x1, . . . ,xn)} satisfies q. 2

Theorem 3.5 The complexity of

1. #〈DB,Q, I, k, T 〉, with I ∈ {cvr, sup} and
2. #〈DBS,Q, T 〉, with I ∈ I

is #P-complete.

Proof. Theorem 3.4 proves that problems (1) and
(2) are #P-hard. In order to prove #P-completeness
of these problems, it remains to show their #P-
membership. The latter property follows immediately
from the fact that the existential versions of the prob-
lems for (1) and (2), i.e. the problems 〈DB,Q, I, k, T 〉
and 〈DBS,Q, T 〉 respectively, are in NP. 2

4. Redundance of instantiations

In [7,8] the process of answering a metaquery is di-
vided into two stages: the instantiation stage and the
filtration stage.

During the instantiation stage the set of consistent
instantiations of the metaquery are determined. The in-
stantiations stage is similar to solving a Constraint Sat-
isfaction Problem (CSP) [11] where we are looking for
all the solutions of the CSP. In the filtration stage, the
instantiated metaqueries, resulting from the instantia-
tion stage, having low values of support, cover or con-
fidence are filtered out.

It follows from the results referred to in the previous
section, that the former problem is as hard as the latter,
at least when support and cover are considered. But, as
the instantiation stage does not involve the use of the
(expensive) join operator, the preprocessing stage can
apport significant time savings to the overall process of
answering a metaquery.

Furthermore, we note that the output of the filtra-
tion stage is sometimes, so as to say, redundant. That
is, the set Σc(Q, DBS, T ) could contain instantiations
that are essentially a syntactical variant of other instan-
tiations contained in the same set. Thus, in order to
speed-up result construction is therefore interesting to
be able to discard those redundant instantiations in the
first place.

Now we give an overview of the section contents.
Section 4.2 defines redundance between instantia-

tions. Intuitively, two instantiations σ and σ′ are to be
considered redundant if they are syntactically equiv-

alent, i.e. if there exists a variable mapping h such
that h(σ) equals σ′. Hence, two redundant instanti-
ations are essentially the same instantiation. Further-
more, two sets of instantiations Σ and Σ′ are redundant
iff for each σ ∈ Σ there exists σ′ ∈ Σ′ such that σ and
σ′ are redundant, and vice versa.

Section 4.3 introduces the concept of metaquery
variant and the concept of redundance between vari-
ants. A variant Q′ of a metaquery Q, is a metaquery
obtained from Q by permutation of ordinary variables
ofQ and possibly adding new ordinary variables, while
Q and Q′ are defined to be redundant if, for each
database, index, and threshold, the sets Σ and Σ′ of the
instantiations of Q and Q′ respectively, are redundant.

After defining variants and the associated redun-
dance concept, Theorem 4.16 states that Q and Q′ are
redundant iffQ andQ′ are syntactically equivalent, i.e.
iff there exists a variable mapping h and a reordering
π of literal schemes such that Q equals h(π(Q′)).

Finally, Theorem 4.20 proves that the set of all non
redundant instantiations of a given metaquery is equiv-
alent (via redundancy) to the union of the sets of all non
redundant instantiations of its non redundant variants.
Theorem 4.20 explains the reasons for defining meta-
query variants. Indeed, it has a practical relevance, as it
suggests that in order to compute the consistent instan-
tiations of a metaquery, it is better to compute first all
its non redundant metaquery variants and then to find
the consistent instantiations of these variants.

We introduce next the notion of redundancy between
instantiations with some examples and then formalize
it.

4.1. Preliminary definitions

First we define the notion of equality of two, respec-
tively, literal schemes, substitutions, sequences of lit-
eral schemes and metaqueries.

Definition 4.1 (Equality of two relation patterns) Let
P (X) and Q(Y) be two relation patterns. We say that
P (X) and Q(Y) are equal under the type-0 seman-
tics, written P (X) =0 Q(Y), iff they are syntacti-
cally identical. We say that P (X) and Q(Y) are equal
under the type-T semantics, with T ∈ {1, 2}, writ-
ten P (X) =T Q(Y), iff P (X) =0 Q(Π(Y)), where
Π : Y → Y is a permutation of the arguments of
Q(Y).

For example, R(A,B) =T R(A,B) for T ∈ {0, 1, 2},
but R(A,B) 6=0 R(B,A), while R(A,B) =T

R(B, A) holds for T ∈ {1, 2}.
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Definition 4.2 (Equality of two atoms) Let p(X) and
q(Y) be two atoms. We say that p(X) and q(Y) are
equal under the type-T semantics, written p(X) =T

q(Y), iff they are syntactically identical.

Definition 4.3 (Equality of two substitutions) Let σ
and σ′ be two type-T substitutions. We say that σ and
σ′ are equal under type-T semantics, written σ =T

σ′, iff for each pair 〈R, A〉 ∈ σ there exists a pair
〈R′, A′〉 ∈ σ′ such that R =T R′ and A =0 A′, and
vice versa.

Definition 4.4 (Equality of two sequences) Let S =
L1, . . . , Lm and S′ = L′

1, . . . , L
′
m bet two sequences

of literal schemes, and let T ∈ {0, 1, 2}. We say that
S and S′ are equal under type-T semantics, written
S =T S′, iff Li =T L′

i, for each i = 1, . . . ,m.

For example, R(A, B), S(B,C) =T R(A, B), S(B,
C) for T ∈ {0, 1, 2} as the two sequences are syntac-
tically identical, but R(B, A), S(B,C) 6=0 R(A,B),
S(B,C), while R(B, A), S(B,C) =T R(A, B), S(B,
C) hold for T ∈ {1, 2}. On the contrary, R(A,B), (B,
C) 6=T S(B,C), R(A,B) for each T ∈ {0, 1, 2}, as
the literal schemes R(A,B) and S(B, C) are situated
into two different positions in the two sequences.

Definition 4.5 (Equality of two metaqueries) Let
Q = L1 ← L2, . . . , Lm and Q′ = L′

1 ← L′
2, . . . , L

′
m

be two metaqueries, and let T ∈ {0, 1, 2}. We say that
Q and Q′ are equal under type-T semantics, written
Q =T Q′, iff L1, . . . , Lm =T L′

1, . . . , L
′
m, for each

i = 1, . . . ,m.

4.2. Redundance of instantiations

We start with an example. Consider the metaquery
Q = P (X,Y )← Q(Y,Z), R(Z,X) and the database
DB1. Then the type-1 instantiations

σ1 = {〈P (X, Y ), UsPT (Y, X)〉,

〈Q(Y, Z), UsCa(Y,Z)〉,

〈R(Z,X), CaTe(Z, X)〉}

σ2 = {〈P (X, Y ), UsPT (X, Y )〉,

〈Q(Y, Z), CaTe(Z, Y )〉,

〈R(Z, X), UsCa(X, Z)〉}

belong to Σc(Q, DBS1, 1), and to Σ(Q, DB, I, 0, 1)
for each I ∈ I. Consider now the metaqueries σ1(Q):

UsPT (Y, X)← UsCa(Y,Z), CaTe(Z, X)

and σ2(Q):

UsPT (X,Y )← CaTe(Z, Y ), UsCa(X, Z).

Despite being syntactically different, σ1(Q) and σ2(Q)
represent the same metaquery. Thus, the simultaneous
presence of both σ1 and σ2 in the sets Σc(Q, DBS1, 1)
and Σ(Q, DB1, I, 0, 1) makes these sets, in some
sense, redundant. If we look carefully at the two above
instantiations, we can say that they are to be consid-
ered redundant as they are essentially the same instan-
tiation. The following definition formalizes the above
intuition.

Definition 4.6 (Variable mapping) Let Q and Q′ be
two metaqueries. A variable mapping h of Q into Q′

is a bijection h : var(Q) → var(Q′). We denote by
h(Q) the metaquery obtained substituting each vari-
able X of Q with h(X).

Definition 4.7 (Redundant instantiations) LetQ and
Q′ be two metaqueries, and let σ and σ′ be two type-T
instantiations on Q and Q′ respectively. We say that σ
and σ′ are redundant under type-T semantics, written
σ ≡T σ′, if there exists a variable mapping h of Q
intoQ′, which maps the head ofQ into the head ofQ′,
such that h(σ) =T σ′, where h(σ) = {〈h(R), h(A)〉 |
〈R,A〉 ∈ σ}.

Resuming our example, let h(Y ) = X , h(X) = Y ,
h(Z) = Z, h(Q) = R, and h(R) = Q, then σ1 ≡1 σ2

as

〈h(P (X, Y )), h(UsPT (Y, X))〉 =

〈P (Y, X), UsPT (X,Y )〉 =1

〈P (X, Y ), UsPT (X, Y )〉,

〈h(Q(Y,Z)), h(UsCa(Y,Z))〉 =

〈R(X, Z), UsCa(X, Z)〉 =1

〈R(Z, X), UsCa(X,Z)〉,

〈h(R(Z, X)), h(CaTe(Z,X))〉 =

〈Q(Z, Y ), CaTe(Z, Y )〉 =1

〈Q(Y, Z), CaTe(Z, Y )〉.

Definition 4.8 (Redundant sets of instantiations)
Let Q and Q′ be two metaqueries and let Σ and Σ′ be
two sets of instantiations of type-T on Q and Q′ re-
spectively. We say that Σ and Σ′ are redundant, written
Σ ≡T Σ′, if for each σ ∈ Σ there exists σ′ ∈ Σ′ such
that σ ≡T σ′, and vice versa. We write Σ .=T Σ′, if
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for each σ ∈ Σ there exists one and only one σ′ ∈ Σ′

such that σ ≡T σ′, and for each σ′ ∈ Σ′ there exists
one and only one σ ∈ Σ such that σ′ ≡T σ.

Definition 4.9 (Minimal set of instantiations) Let
T ∈ {0, 1, 2}, let Q be a metaquery, let DB be
a database, let I ∈ I and let k be a rational
number in [0, 1). We define Σ̂(Q, DB, I, k, T ) as
the smallest subset of Σ(Q, DB, I, k, T ) such that
Σ(Q, DB, I, k, T ) ≡T Σ̂(Q, DB, I, k, T ).

4.3. Variants and redundance of variants

Now we define the concept of metaquery variant, the
notion of redundance between variants, and then we
explain how variants are related to the property of re-
dundance between instantiations.

Definition 4.10 (Metaquery variants) Let Q and Q′

be two metaqueries, we say that:

– Q′ is a 1, 0–variant of Q if Q =1 Q′;
– Q′ is a 2, 1–variant of Q if there exists a meta-

query Q′′ such that Q′′ =0 Q′, where Q′′ is ob-
tained from Q augmenting the sequence of or-
dinary variables of every relational pattern of Q
with a possibly empty sequence of padding vari-
ables;

– Q′ is a 2, 0–variant of Q if there exists a meta-
query Q′′ such that Q′′ is a 2, 1-variant of Q and
Q′ is a 1, 0-variant of Q′′.

For example, consider the metaqueries:

Q1 = P (X,Y )← Q(X,Y, Z), R(Z)

Q2 = P (Y, X)← Q(X, Z, Y ), R(Z)

Q3 = P (X,Y, A)← Q(X,Y, Z), R(Z, B)

Q4 = P (A,X, Y )← Q(Z, X, Y ), R(Z, B)

Then:

– Q2 is a 1, 0-variant of Q1 as both P (X,Y ) and
Q(X,Y, Z) differ from P (Y, X) and Q(X, Z, Y )
only for a permutation of the ordinary variables,

– Q3 is a 2, 1-variant of Q1 as it is obtained aug-
menting P (X,Y ) with A and R(Z) with B,

– Q4 is a 1, 0-variant of Q3 as is obtained permut-
ing the arguments of the literal schemes of Q3,
and

– Q4 is a 2, 0-variant of Q1 as it is a 1, 0-variant of
Q3 which is a 2, 1-variant of Q1.

Definition 4.11 (Redundant variants) Let Q be a
metaquery, let T1, T2 ∈ {0, 1, 2}, T1 > T2, and let
Q1 and Q2 be two T1, T2-variants of Q. We say that
Q1 andQ2 are redundant under type-T2 instantiations,
written Q1 ≡T2 Q2, iff for each database DB, index
I ∈ I and threshold value k, Σ(Q1, DB, I, k, T2) ≡T2

Σ(Q2, DB, I, k, T2).

Definition 4.12 (Isolated variable) Let Q be a meta-
query, and let X be an ordinary variable of Q. We
say that X is isolated if it occurs into only one literal
scheme of Q.

For example, consider the metaqueryQ = P (X, Y )←
Q(X, Z), R(W ). Then, the ordinary variables Z and
W are isolated.

Definition 4.13 (General metaquery) Let Q be a
metaquery. We say that Q is general under the type-
0 and type-1 semantics if Q does not contain atoms.
We say that Q is general under the type-2 semantics if
Q does not contain neither atoms nor isolated ordinary
variables.

From now we shall deal only with general metaque-
ries. Note that, under the type-2 semantics, isolated or-
dinary variables occurring into literal schemes do not
affect the pattern specified by the metaquery. We will
show in Section 7 how metaqueries containing atoms
can be managed.

Problem 4.14 (Redundance of variants) Given a
general metaquery Q and two T1, T2-variants Q1 and
Q2 of Q, T1, T2 ∈ {0, 1, 2}, T1 > T2, is it true that
Q1 ≡T2 Q2 ?

Definition 4.15 (Reordering) Let Q = H ← B1, . . .,
Bm be a metaquery. A reordering π of Q is a bi-
jection π : ls(Q) → ls(Q) which maps the head
of Q into itself. We denote by π(Q) the metaquery
H ← π(B1), . . . , π(Bm)1.

The following theorem states an important result re-
garding general metaqueries, i.e. that two variants of a
general metaquery are redundant if and only if they are
syntactically equivalent.

Theorem 4.16 Let Q be a general metaquery, let
T1, T2 ∈ {0, 1, 2}, T1 > T2, and letQ1 andQ2 be two
T1, T2-variants ofQ. ThenQ1 ≡T2 Q2 iff there exist a
variable mapping ofQ2 intoQ1 and a reordering π of
Q2 such that Q1 =T2 h(π(Q2)).

1Recall that ls(Q) denotes the set of literal schemes occurring in
Q.
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Proof. (⇒) Let Q1 be

P1(X1)← P2(X2), . . . , Pm(Xm),

and let Q2 be

P1(Y1)← P2(Y2), . . . , Pm(Ym).

Let g be a bijection defined on the set of variables
occurring into the metaquery Q, such that, for each
variable V of Q, g(V ) is a new constant associated to
V . Let L be a literal scheme of Q, then g(L) denotes
the ground atom obtained from L substituting each or-
dinary and predicate variable V of L with g(V ).

Consider the database DBQ1 = {g(Pi(Xi)) | 1 ≤
i ≤ m}, i.e. the database obtained grounding the lit-
eral schemes occurring into Q1 through the mapping
g. Then σ1 = {〈Pi(Xi), g(Pi)(Xi)〉 | 1 ≤ i ≤ m}
belongs to Σ(Q1, DBQ1 , I, 0, T2), for each I ∈ I. In-
deed, the relation

r = g(P1)(X1) 1 g(P2)(X2) 1 . . . 1 g(Pm)(Xm)

is not empty on the database DBQ1 by construction,
and cnf(σ1(Q1)) is

|πatt(X2∪...∪Xm)(r)|
|g(P2)(X2) 1 . . . 1 g(Pm)(Xm)|

> 0,

cvr(σ1(Q1)) is

|πatt(X1)(r)|
|g(P1)(X1)|

> 0,

and sup(σ1(Q1)) is

max
2≤i≤m

{ |πatt(Xi)(r)|
|g(Pi)(Xi)|

}
> 0

on DBQ1 . Q1 ≡T2 Q2 implies that there exists an
instantiation σ2 ∈ Σ(Q2, DBQ1 , I, 0, T2) and a vari-
able mapping h such that σ1 =T2 h(σ2). Let σ2 =
{〈Pj(Yj), rj(Y′

j)〉 | 1 ≤ j ≤ m}, where rj is a re-
lation of DBQ1 , and Y′

j is obtained by permutation of
the variables and constants in Yj, possibly augmented
with a set of padding variables, for each j = 1, . . . , m.
Then there exists a permutation ρ2 of {1, . . . , m} such
that {

Pρ(j)(Xρ(j)) =T2 h(Pj(Yj))
g(Pρ(j))(Xρ(j)) =0 rj(h(Y′

j))
, j = 1, . . . , m

2Recall that ρ(1) = 1 by definition of redundant instantiations.

Hence, it is immediate to build from the permutation ρ
a reordering π of Q2 such that Q1 =T2 h(π(Q2)).
(⇐) The inverse implication is immediate. 2

For example, consider the general metaquery Q =
P (X,Y )← Q(Y, Z), R(Z, X) and the following two
redundant 2, 0-variants of Q: Q1 = P (X, Y ) ←
Q(Y, Z,A), R(Z,X, B) and Q2 = P (Y, X) ←
Q(Z, Y,A), R(X,Z, B). Then the database DBQ1 is
{p(x, y), q(y, z, a), r(z, x, b)} and

σ1 = {〈P (X, Y ), p(X, Y )〉,

〈Q(Y, Z, A), q(Y, Z,A)〉,

〈R(Z, X, B), r(Z, X,B)〉}

certainly belongs to Σ(Q1, DBQ1 , I, k, 0), for each
I ∈ I and k ∈ [0, 1). Consider the instantiation

σ2 = {〈P (Y, X), p(X, Y )〉,

〈R(X, Z,B), q(X,Z, B)〉,

〈Q(Z, Y, A), r(Z, Y,A)〉}

of Q2 belonging to Σ(Q2, DBQ1 , I, k, 0), for each
I ∈ I and k ∈ [0, 1), and redundant to σ1, as
σ1 =0 h(σ2), where h is such that h(P ) = P ,
h(Q) = R, h(R) = Q, h(X) = Y , h(Y ) = X ,
h(Z) = Z, h(A) = B, and h(B) = A. Now, we
can build a reordering π such that Q1 =0 h(π(Q2)).
In particular, π is such that π(P (X, Y )) = P (X, Y ),
π(Q(Z, Y,A)) = R(X, Z,B), and π(R(X,Z, B)) =
Q(Z, Y,A).

Vice versa, consider the general metaquery Q =
P (X,Y )← Q(Y, Z), R(Z, W ) and the following two
1, 0-variants of Q: Q1 = Q and Q2 = P (Y, X) ←
Q(Z, Y ), R(W,Z). It is easy to verify that there does
not exist a variable mapping h and a reordering π
such that Q1 =0 h(π(Q2)). Nevertheless, if we re-
lease the constraint that π must map the head of
Q2 into itself, we can obtain the above equality as
follows: h(P ) = R, h(R) = P , h(Q) = Q,
h(X) = W , h(W ) = X , h(Y ) = Z, h(Z) = Y ,
π(P (Y, X)) = R(W,Z), π(Q(Z, Y )) = Q(Z, Y ),
and π(R(W,Z)) = P (Y,X). Now, we verify that Q1

and Q2 are not redundant under type-0 semantics. Let
DBsup be the database {p(x′, y′), q(y, z), r(z, w)}.
Then, for each k ∈ [0, 1), the instantiation

σ1 = {〈P (X, Y ), p(X, Y )〉, 〈Q(Y,Z), q(Y,Z)〉,

〈R(Z,W ), r(Z, W )〉}

belongs to Σ(Q1, DBsup, sup, k, 0), while the unique
instantiation of Σ(Q2, DBsup, sup, k, 0) having non
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zero support is

σ2 = {〈P (Y,X), p(Y,X)〉, 〈Q(Z, Y ), r(Z, Y )〉,

〈R(W,Z), q(W,Z)〉}
but σ2 6≡0 σ1. On the contrary, the instantiation

σ′
2 = {〈R(W,Z), p(W,Z)〉, 〈Q(Z, Y ), r(Z, Y )〉,

〈P (Y, X), q(Y, Z)〉}
of Q2 on DBsup is such that sup(σ′

2(Q2)) on DBsup

is zero.
LetQ be a general metaquery, let T1, T2 ∈ {0, 1, 2},

T1 > T2, and let Q1 and Q2 be two T1, T2-variants
of Q such that Q1 ≡T2 Q2. We say that Q1 and Q2

are redundant via h and π, to denote a reordering π of
Q2 and a variable mapping of Q2 into Q1, such that
Q1 =T2 h(π(Q2)) (which exist by Theorem 4.16).

Definition 4.17 (Sets of variants of a metaquery)
Let Q be a metaquery, and let T1, T2 ∈ {0, 1, 2},
T1 > T2. Then

–
∨

T1,T2

Q denotes the set of all the T1, T2-variants

of Q;

–
≡∨

T1,T2

Q denotes the set of all the T1, T2-variants

of Q that are not redundant under the type-T2 se-
mantics.

The following theorem explains how variants are re-
lated to the property of redundancy between instanti-
ations, and establishes an alternative way to calculate
the set Σ̂(Q, DB, I, k, T ).

Two technical definitions are needed in the theorem
and provided next.

Definition 4.18 (Restriction of a literal scheme) Let
P (X) be a literal scheme and let S be a set of ordi-
nary variables. Then the restriction rest(P (X), S) of
P (X) on S, is the literal scheme P (Y) obtained by
deleting from X all the variables which do not appear
into S.

For example, the restriction of P (X,Z, a, Y ) on the
set of ordinary variables {X, Y } is the literal scheme
P (X, a, Y ).

Definition 4.19 (Restriction of an instantiation) Let
σ be a type-T instantiation, T ∈ {0, 1, 2}, and let
S be a set of ordinary variables. Then the restriction
rest(σ, S) of σ on S is the type-T instantiation σ′ such
that σ′ = {〈rest(P (X), S), p(Y)〉 | 〈P (X), p(Y)〉 ∈
σ}. Let Σ be a set of instantiations. Then the restriction
rest(Σ, S) of Σ on S is the set {rest(σ) | σ ∈ Σ}.

Theorem 4.20 Let Q be a general metaquery, DB be
a database, I ∈ I, k ∈ [0, 1), T ∈ {1, 2}, and let

M =
∪

Q′∈
∨

T,0
Q

Σ(Q′, DB, I, k, 0) , and

M̂ =
∪

Q′∈
∨≡

T,0
Q

Σ̂(Q′, DB, I, k, 0).

Then

1. Σ(Q, DB, I, k, T ) ≡T rest (M, ov(Q)), and
2. Σ̂(Q, DB, I, k, T ) .=T rest(M̂, ov(Q)).

Proof. Let Q = P1(X1)← P2(X2), . . . , Pm(Xm).
(1) Consider the inclusion Σ(Q, DB, I, k, T ) ⊇

rest(M, ov(Q)). Let Q′ be a T, 0-variant of Q and
let σ′′ be a type-0 instantiation of Q′ belonging to
Σ(Q′, DB, I, k, 0). Then Q′

P1(Π1(X1 ∪A1))←

P2(Π2(X2 ∪A2)), . . . , Pm(Πm(Xm ∪Am))

where A1, . . . ,Am are possibly empty sets of padding
ordinary variables and Π1, . . . ,Πm are permutations
of the sets X1 ∪ A1, . . . ,Xm ∪ Am respectively,
while σ′′ = {〈Pj(Πj(Xj ∪ Aj)), pj(Yj)〉 | 1 ≤
j ≤ m}. Now consider the instantiation σ′ =
rest(σ′′, ov(Q)) = {〈Pj(Πj(Xj)), pj(Yj)〉 | 1 ≤
j ≤ m}. Then σ′ is a type-T instantiation of
Q. As σ′(Q) is identical to σ′′(Q′), then σ′ ∈
Σ(Q, DB, I, k, T ).

Consider now the inclusion rest(M, ov(Q)) ⊇
Σ(Q, DB, I, k, T ). Let σ be an instantiation belong-
ing to Σ(Q, DB, I, k, T ). Now we show that there
exists a T, 0-variant Q′ of Q such that σ belongs to
rest(Σ(Q′, DB, I, k, 0), ov(Q)). Let σ = {〈Pj(Xj),
pj(Yj)〉 | 1 ≤ j ≤ m}, then, by definition of instan-
tiation, there exist possibly empty sets A1, . . . ,Am

of padding variables such that Yj = Xj ∪ Aj, for
j = 1, . . . ,m, and permutations Π1, . . . ,Πm of the
sets X1∪A1, . . . ,Xm∪Am respectively, such that the
sequence of ordinary variables and constants Πj(Xj ∪
Aj) coincides with the sequence Yj, for each j =
1, . . . , m. Consider the metaquery

Q′ = P1(Π1(X1 ∪A1))←

P2(Π(X2 ∪A2)), . . . , Pm(Πm(Xm ∪Am))

thenQ′ is a T, 0-variant ofQ, and σ′′ = {〈Pj(Πj(Xj∪
Aj)), pj(Yj)〉 | 1 ≤ j ≤ m} is a type-0 instan-
tiation belonging to Σ(Q′, DB, I, k, 0), as σ′′(Q′) is
identical to σ(Q). Clearly, σ′ = rest(σ′′, ov(Q)) =
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{〈Pj(Πj(Xj)), pj(Yj)〉 | 1 ≤ j ≤ m} is such that
σ =T σ′.

(2) First we note that M ≡T M̂ by construction.
Then, it follows that:

Σ̂(Q, DB, I, k, T ) ≡T Σ(Q, DB, I, k, T ) ≡T

rest(M, ov(Q)) ≡T rest(M̂, ov(Q)).

Now we prove that M̂ is the smallest subset of M
such thatM≡T M̂, or equivalently that for each pair

Q′,Q′′ of distinct metaqueries belonging to
≡∨

T,0

Q, and

for each pair σ′, σ′′ of instantiations such that σ′ ∈
Σ̂(Q′, DB, I, k, 0) and σ′′ ∈ Σ̂(Q′′, DB, I, k, 0), it
holds that σ′ 6≡0 σ′′. By contradiction, assume that
there exist Q′, Q′′, σ′, and σ′′ as defined above, such
that σ′ ≡0 σ′′. Let

Q′ = P1(Π′
1(X1 ∪A1))←

P2(Π′
2(X1 ∪A2)), . . . , Pm(Π′

m(Xm ∪Am))

Q′′ = P1(Π′′
1(X1 ∪B1))←

P2(Π′′
2(X1 ∪B2)), . . . , Pm(Π′′

m(Xm ∪Bm))
then σ′ ≡0 σ′′ implies that there exists a variable map-
ping h and a permutation ρ of {1, . . . , m}, which maps
the head of Q′ into the head of Q′′ by definition of
redundant instantiations, such that

Pj(Π′
j(Xj ∪Aj)) =0 h(Pρ(j)(Π′′

ρ(j)(Xρ(j) ∪Bρ(j))))

and thus a reordering π such that Q′ =0 h(π(Q′′)),
i.e. Q′ and Q′′ are redundant under type-0 semantics,
a contradiction. Thus M̂ is the smallest subset of M
such that M̂ ≡T M.

In order to conclude the proof, we need the follow-
ing technical result.

Lemma 4.21 Let Q be a general metaquery, let DB
be a database, let T ∈ {1, 2}, let Q1 and Q2 be
two non redundant T, 0-variants of Q and let σ1 and
σ2 be two instantiations of Q1 and Q2 on DB. Then
rest(σ1, ov(Q)) 6≡0 rest(σ2, ov(Q)).
Proof. Let σ1 = {〈Pj(Xj), pj(Xj)〉 | 1 ≤ j ≤ m}
and σ2 = {〈Pj(Yj), qj(Yj)〉 | 1 ≤ j ≤ m}.
By contradiction, assume that rest(σ1, ov(Q)) ≡0

rest(σ2, ov(Q)). Then there exist a variable mapping
h and a permutation ρ of {1, . . . , m} such that

rest(Pj(Xj), ov(Q)) =0

rest(Pρ(j)(Yρ(j)), ov(Q))

i.e. Pj =0 Pρ(j), and

pj(Xj) =0 qρ(j)(Yρ(j)) i.e. Xj =0 Yρ(j)

and thus a reordering π such that Q1 =0 h(π(Q2)), a
contradiction. 2

We can thus resume the proof of Theorem 4.20
by noting that, from Lemma 4.21 it follows that
rest(M̂, ov(Q)) is the smallest subset of rest(M,
ov(Q)) such that rest(M̂, ov(Q)) ≡T rest(M,
ov(Q)). 2

5. Deciding redundance

Theorem 4.20 establishes an important relationship
between the set Σ̂(Q, DB, I, k, T ) and the non redun-
dant T, 0-variants of a metaquery. Thus, in order to
take advantage of this relationship it is needed to have
an effective method to check the redundancy of two
variants of a metaquery.

This problem is taken into account in the following.
Indeed, Theorems 5.2 and 5.3 show that the problems
of deciding if two metaquery variants are redundant
and if two instantiations of a metaquery are redundant
reduce to the graph isomorphism problem. These re-
sults make redundancy check effective by using well-
known algorithms for solving graph isomorphism.

Section 5.1 introduces the concept of autoset. Intu-
itively, an autoset of a metaquery is a set of variables
S such that, for each literal scheme of the metaquery,
either all the variables of S occur in it, or none of the
variables of S occur in it. Autosets are strictly related
to the property of variant redundance, as explained by
Theorem 5.7 showing that if two variants are redun-
dant via a variable mapping h, then h is a bijection be-
tween autosets, besides being a bijection between vari-
ables. Hence, autosets can be exploited to speed-up re-
dundancy check, as explained by Corollary 5.10, by
considering a contraction of the metaquery instead of
the original metaquery, where a contraction is obtained
by “collapsing” autosets into a single new variable. Fi-
nally, Theorem 5.14 provides a method to compute the
autosets of a metaquery in linear time.

Now we show that the well-known graph isomor-
phism algorithms can be exploited in order to check
quite efficiently whether two metaquery variants are
redundant.

Problem 5.1 (Graph isomorphism) Given two graphs
G1 = (V1, E1) and G2 = (V2, E2), we say that they
are isomorphic if there exists a bijection ρ : V2 → V1,
that we call isomorphism, such that for each edge
(u, v) ∈ E2 there exists an edge (ρ(u), ρ(v)) ∈ E1.
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By little abuse of notation and for simplicity, in the
following we will denote by ρ(G2) the graph ({ρ(v) |
v ∈ V2}, {(ρ(v), ρ(u)) | (u, v) ∈ E2}).

Theorem 5.2 Redundance between variants of a gen-
eral metaquery reduces to graph isomorphism.
Proof. We reduce general variants redundance to undi-
rected labelled graph isomorphism, that is to the spe-
cial case of the graph isomorphism problem in which
the two graphs are labelled and the isomorphism must
preserve labels. Let Q be a general metaquery, and let
T ∈ {0, 1, 2}. We denote by GT (Q) an undirected la-
belled graph associated to Q and defined as follows.
For each variable and constant V of Q we introduce
in GT (Q) a labelled node associated to V and in addi-
tion a labelled node associated to each occurrence of
V in Q. The labels we employ in the reduction are the
following:

– y : denote the nodes associated to predicate vari-
ables;

– x : denote the nodes associated to ordinary vari-
ables;

– c : denote the nodes associated to constants c (i.e.
we have a distinct label c for each constant c in
the rule);

– h : denotes the node associated to the predicate
variable occurring in the head of the rule;

– p : denote the nodes associated to predicate vari-
ables occurring in the body of the rule;

– z : denote the nodes associated to ordinary vari-
ables and constants occurring in the rule, under
type-1 and type-2 semantics;

– 1, 2, 3, . . . : i.e. positive integer numbers, denote
the nodes associated to ordinary variables and
constants occurring in the rule, under type-0 se-
mantics.

For each variable or constant V of Q and label l, let
ln(V, l) denote a node associated to V having label l.
For each variable and constant V of Q, let

n(V ) =

 ln(V, y), if V is a predicate variable
ln(V, x), if V is an ordinary variable
ln(V, V ), if V is a constant

The graph GT (Q) is built as follows:

– for each variable and constant V of Q, put the
node n(V ) into the graph GT (Q);

– for each literal scheme P (X) in the body of Q,
put the node ln(P, p) and the edge (n(P ), ln(P ,
p)) into GT (Q). If P occurs many times in Q,
then the nodes ln(P, p) associated to each occur-
rence of P are to be considered distinct;

– let P (X) be the head of Q, then put the node
ln(P , h) and the edge (n(P ), ln(P, h)) into
GT (Q);

– for each literal scheme P (X1, . . . , Xn) of Q, let
v be ln(P, p) if the literal scheme occurs in the
body ofQ, and ln(P, h) if it occurs in the head of
Q. For each i = 1, . . . , n:

∗ put the node ln(Xi, i), and the edges (v, ln(Xi,
i)) and (ln(Xi, i), n(Xi)) into GT (Q), for T =
0;

∗ put the edge (v, n(Xi)) into GT (Q), for T ∈
{1, 2}.

Under the type-0 semantics, if Xi occurs more
times inQ, then the nodes ln(Xi, i) associated to
each occurrence of Xi are to be considered dis-
tinct, for i = 1, . . . , n.
In the following we denote by GP (X1,...,Xn)

T (Q)
the subgraph of GT (Q) induced (1) by the set
of nodes {v, ln(X1, 1), . . . , ln(Xn, n)} under the
type-0 semantics, or (2) by the set of nodes
{v, n(X1), . . . , n(Xn)} under the type-1 and type-
2 semantics.

We note that labeled graph isomorphism is reducible to
graph isomorphism [9].

Let Q1 and Q2 be two T1, T2-variants, T1, T2 ∈
{0, 1, 2}, T1 > T2, of a metaquery Q.

Assume that G′ = GT2(Q1) = (V1, E1) and G′′ =
GT2(Q2) = (V2, E2) are isomorphic. Then there exists
a bijection ρ : V1 → V2 such that ρ(G′) = G′′. Define
un(ln(U, l)) as U , then let h the symbol mapping of
Q1 into Q2 such that h(V ) = un(ρ(ln(V, x))) if V
is an ordinary variable, and h(V ) = un(ρ(ln(V, y)))
if V is a predicate variable. By construction, each sub-
graph GP (X)

T2
(Q1) of G′ is mapped by ρ into a subgraph

GQ(Y)
T2

(Q2) of G′′, where P (X) and Q(Y) are literal
schemes occurring inQ1 andQ2 respectively. It is im-
mediate to build from this mapping a reordering ofQ1

such that Q2 =T2 h(π(Q1)) holds.
Indeed, assume that Q1 and Q2 are redundant un-

der the type-T2 semantics. Then there exist a symbol
mapping h ofQ1 intoQ2 and a reordering ofQ1, such
that Q2 =T2 h(π(Q1)). Let ρ : V1 → V2 be such that
ρ(ln(V, x)) = ln(h(V ), x) if V is an ordinary vari-
able, and ρ(ln(V, y)) = ln(h(V ), y) if V is a predi-
cate variable, for each variable V of Q1. Furthermore,
let ρ such that, for each literal scheme P (X) of Q1,
ρ(GP (X)

T2
(Q1)) = GQ(Y)

T2
(Q2), where Q(Y) is the lit-

eral scheme of Q2 into which is mapped P (X) via h
and π. It is immediate to verify that G2 = ρ(G1). 2
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Fig. 3. The graphs G0(Q1) (on the left) and G0(Q2) (on the right)

For example, let Q = P (X,Y, a) ← Q(Z, X), Q(Z,
Y ) be a general metaquery, and let Q1 = Q and
Q2 = P (Y, X, a) ← Q(Z, X), Q(Z, Y ) be two 1, 0-
variants of Q. Figure 3 shows the graphs G0(Q1) and
G0(Q2) associated respectively to Q1 and Q2 under
the type-0 semantics. There the superscripts denote the
labels associated to each node, while the subscripts de-
note the literal scheme in which the variables appear.
It can be verified that the two graphs are isomorphic.
The bijection between the nodes of the two graphs so
obtained preserves the labelling of the nodes. In par-
ticular, let ρ(Xx) = Y x, ρ(Y x) = Xx, ρ(Y 1

1 ) =
X1

1 , ρ(X2
1 ) = Y 2

1 , ρ(Y 2
3 ) = X2

2 , ρ(X2
2 ) = Y 2

3 ,
ρ(Qp

3) = Qp
2, ρ(Qp

2) = Qp
3, and ρ(V ) = V oth-

erwise, then G0(Q1) = ρ(G0(Q2)). Let h the vari-
able mapping of Q2 into Q1 obtained as follows:
h(X) = un(ρ(Xx)) = un(Y x) = Y , h(Y ) =
un(ρ(Y x)) = un(Xx) = X , h(Z) = un(ρ(Zx)) =
un(Zx) = Z, un(ρ(P y)) = un(P y) = P , and
un(ρ(Qy)) = un(Qy) = Q. Furthermore, let π the
reordering of Q2 obtained from ρ(GP (Y,X,a)

0 (Q2)) =
GP (X,Y,a)

0 (Q1), ρ(GQ(Z,X)
0 (Q2)) = GQ(Z,Y )

0 (Q1),
and ρ(GQ(Z,Y )

0 (Q2)) = GQ(Z,X)
0 (Q1), i.e. such that

π(P (X,Y, a)) = P (X, Y, a), π(Q(Z, X)) = Q(Z, Y )
and π(Q(Z, Y )) = Q(Z,X). Then Q1 =0 h(π(Q2)),
andQ1 andQ2 are redundant under the type-0 seman-
tics.

We recall that graph isomorphism belong to NP and
it is not known to belong to P, while there is strong
theoretical evidence against its NP-completeness [14].
Nevertheless, from a practical point of view, the back-
tracking algorithms available for solving graph isomor-
phism perform quite well [19].

Thus Theorem 5.2 is relevant as it states a prac-
tical way to check the redundance of two variants.
Moreover, it permits to single out interesting sub-
sets of metaqueries for which redundance checking
is tractable. Indeed, while the best worst-case bound
for a graph isomorphism algorithm actually known is

exp
√

cn log n for a graph with n nodes [5], for differ-
ent classes of graphs, as, for example, for trees [1], pla-
nar graphs [15], graphs of bounded degree [17], graphs
with colored (i.e. labelled) vertices and bounded color
classes [4], polynomial time algorithms are known.

In order to exploit result of Theorem 4.20 we also
need an effective method to check redundancy of two
instantiations of the same metaquery variant.

Theorem 5.3 Redundance between instantiations of a
general metaquery reduces to graph isomorphism.

Proof. LetQ be a general metaquery, let σ a type-T in-
stantiation of Q, and let ν(σ(Q)) be the general meta-
query obtained by replacing each atom p(X) occurring
into σ(Q) with the relation pattern P (p,X)

Given two instantiations σ and σ′ of a general
metaquery Q, then σ ≡T σ′ iff G0(ν(σ(Q))) and
G0(ν(σ′(Q))) are isomorphic, can be proved by fol-
lowing the same line of reasoning of Theorem 5.2. 2

For example, let Q be P (X) ← Q(X,Y ), R(X, Y ),
and let σ and σ′ be two type-0 instantiations of
Q such that σ(Q) = a(X) ← b(X,Y ), c(X, Y ),
and σ′(Q) = a(X) ← c(X,Y ), b(X,Y ). Then,
ν(σ(Q)) = P (a,X) ← P (b,X, Y ), P (c,X, Y ), and
ν(σ′(Q)) = P (a,X) ← P (c,X, Y ), P (b, X, Y ),
while the graphs G0(ν(σ(Q))) and G0(ν(σ′(Q))) are
isomorphic.

5.1. Autosets

Now we introduce the concept of autoset and show
that it is strictly related with the property of variant
redundancy.

Definition 5.4 Let Q be a metaquery, and let S be a
subset of variables of Q. We denote by QS the set
{P (X) | S ⊆ {P}∪X and P (X) occurs into Q}, and
by QS the set Q∅ − QS , i.e. the set composed by the
literal schemes occurring in Q but not in QS .

Definition 5.5 (Autoset) LetQ be a metaquery and let
S be a set of variables. We say that S is an autoset of
Q if

1. S is a set of ordinary variables and none of the
variables of S occur in a literal scheme ofQS , or

2. S = {P}, where P is a predicate variable of Q.

We call ordinary (predicate resp.) autoset an autoset
composed solely by ordinary (predicate resp.) vari-
ables.
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For example, let Q be

P (X, Y,W )← Q(X, Y, Z), P (Z, W ).

Then the autosets of Q are S1 = {P}, S2 =
{Q}, S3 = {X}, S4 = {Y }, S5 = {X, Y },
S6 = {W} and S7 = {Z}. Indeed, Q{X,Y } =
{P (X,Y, W ), Q(X,Y, Z)}, whereas nor X neither Y

occur in Q{X,Y } = {P (Z, W )}.
Each variable of a metaquery form itself an autoset.

Nevertheless, every variable belong to one and only
one maximal autoset, as explained by the following
property.

Proposition 5.6 Let Q be a metaquery, let X be an
ordinary variable ofQ, and let S ⊇ {X} be an autoset
of Q. Then, Q{X} = QS .

Proof. It follows from the definition of autoset, that
Q{X} ⊇ QS , as each literal scheme inQS contains all
the variables in the set S, hence also the variable X .
Furthermore, as X ∈ S then X cannot belong to none
of the literal schemes in the setQS , thusQS ⊇ Q{X},
i.e. Q{X} = QS . 2

Thus the maximal autosets of a metaquery Q form a
partition of the variables of Q.

For example, let Q be

P (X, Y, U, V, W )← Q(X, Y, W ), Q(U, V, W ),

then the maximal autosets of Q are S1 = {P}, S2 =
{Q}, S3 = {X, Y }, S4 = {U, V }, S5 = {W}.

The following theorem explains why autosets are
strictly related to the property of variant redundance.
Indeed, it proves that, if Q1 =T2 h(π(Q)) holds, then
the variable mapping h is a bijection between autosets,
besides being a bijection between variables.

Theorem 5.7 LetQ be a general metaquery, let T1, T2

∈ {0, 1, 2}, T1 > T2, and letQ1 andQ2 be two T1, T2-
variants of Q such that Q1 ≡T2 Q2 via h and π. Then
for each maximal autoset S1 of Q1 there exists a max-
imal autoset S2 of Q2 such that S1 = h(S2).

Proof. Let S2 be a maximal autoset of Q2. We note
that the variables in S2 occur in each literal scheme
of QS2

2 , thus the variables in h(S2) certainly occur in
each literal scheme of h(QS2

2 ). Suppose that there ex-
ists X ∈ h(S2) such that X occurs in a literal scheme
of Q1 which is not in h(QS2

2 ). If follows from the
hypothesis that h is not a bijection, a contradiction.
Hence h(S2) is an autoset of Q1, and there exists a

maximal autoset S1 of Q1 such that S1 ⊇ h(S2), and
QS1

1 = h(QS2
2 ).

We note that the variables in h−1(S1) occur in each
literal scheme of QS2

2 . Suppose that there exists Y ∈
h−1(S1) such that Y occurs in a literal scheme of
Q2 which is not in QS2

2 . If follows from the hypoth-
esis that h is not a bijection a contradiction. Hence,
h−1(S1) is an autoset of Q2, and there exists a a max-
imal autoset S′

2 of Q2 such that S′
2 ⊇ h−1(S1), and

QS1
1 = h(QS′

2
2 ).

As we are dealing with maximal autosets, then it is
the case that S′

2 is S2. Thus, S1 = h(S2). 2

For example, let Q :

P (X, Y, U, V, W )← Q(X,Y, W ), Q(U, V, W )

be a general metaquery, and let Q1 = Q and Q2 =
P (U, V, X, Y,W ) ← Q(X, Y, W ), Q(U, V, W ) be
two redundant under type-0 semantics 1, 0-variants
of Q via π and h. In this case π is such that
π(P (U, V, X, Y,W )) = P (X, Y, U, V, W ), π(Q(X ,
Y, W )) = Q(U, V, W ), and π(Q(U, V,W )) = Q(X ,
Y, W ), while h(P ) = P , h(Q) = Q, h(W ) = W ,
h(X) = U , h(U) = X , h(Y ) = V and h(V ) = Y .
That is, according to Theorem 5.7, h maps the maxi-
mal autosets {P}, {Q}, {W} into themselves, and the
maximal autoset {X, Y } into {U, V } and vice versa.

We will show in the next section that autosets can
be exploited to efficiently avoid the generation of cer-
tain redundant variants of a metaquery. Furthermore,
by Theorem 5.7 it follows that the check described in
Theorem 5.2 can be performed taking advantage of the
autosets of the metaquery, as accounted for in the fol-
lowing.

Definition 5.8 (Contraction of a metaquery) Let Q
be a metaquery, let S1, . . . , Sn be the maximal ordi-
nary autosets of Q, and let Φ1, . . . ,Φn be arbitrary or-
dinary variables not occurring into Q. Then the con-
traction contr(Q) of Q is the metaquery obtained
from Q substituting each occurrence of the autoset Si

with the ordinary variable Φi, for i = 1, . . . , m.

For example, consider the metaquery Q :

P (X, U, Y, V, W )← Q(X,Y, W ), R(V, W,U),

with maximal ordinary autosets S1 = {X, Y }, S2 =
{U, V }, and S3 = {W}.

Then the contraction contr(Q) of Q is the meta-
query

P (Φ1, Φ2,Φ3)← Q(Φ1, Φ3), R(Φ2, Φ3).
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Definition 5.9 (Graph associated to a contraction)
Let Q be a general metaquery, and let T ∈ {0, 1, 2}.
Let S1, . . . , Sn be the maximal ordinary autosets ofQ,
and let Φ1, . . . ,Φn be arbitrary ordinary variables not
occurring into Q. We denote by contrGT (Q) the la-
belled graph defined as follows:

– T = 0 : the graph contrGT (Q) is defined as
GT (Q) except that the nodes

ln(X1, x), . . . , ln(Xm, x)

associated to the ordinary variables X1, . . . , Xn

of Q are substituted with the nodes

ln(Φ1,−|S1|), . . . , ln(Φn,−|Sn|).

In particular, let Si = Yi,1, . . . , Yi,ki , for i =
1, . . . , n, then the nodes

ln(Yi,1, x), . . . , ln(Yi,ki , x)

are “grouped” and substituted with a unique new
node ln(Φi,−|Si|), for i = 1, . . . , n.

– T ∈ {1,2} : the graph contrGT (Q) is defined
as GT (contr(Q)) of Theorem 5.2 except that the
nodes

ln(Φ1, x), . . . , ln(Φn, x)

associated to the ordinary variables Φ1, . . . ,Φn of
contr(Q) are substituted with the nodes

ln(Φ1,−|S1|), . . . , ln(Φn,−|Sn|).

Corollary 5.10 Let Q be a general metaquery, let
T1, T2 ∈ {0, 1, 2}, T1 > T2, and let Q1 and Q2

two T1, T2-variants of Q. Then Q1 ≡T2 Q2 iff
contrGT2(Q1) and contrGT2(Q2) are isomorphic.
Proof. If can be shown using the same line of reasoning
used to prove Theorem 5.2. 2

In the following it is shown that the maximal autosets
of a metaquery can be computed in linear time. This
is done by reducing the maximal autosets problem, de-
fined next, to the well-known modular decomposition
problem.

Problem 5.11 (Maximal autosets) Given a metaquery
Q, find the maximal autosets of Q.

Definition 5.12 (Vertex partitioning of a graph)
Given a graph G = (V, E) and an initial partition
P = {S1, . . . , Sn} of V , the vertex partitioning of G is
the coarsest partition P ′ = {M1, . . . , Mm} of V such
that:

1. each Mi is a subset of some Sj , and
2. v, u ∈ Mi implies N(v) −Mi = N(u) −Mi,

where N(x) = {y | (x, y) ∈ E}

where coarsest means that each Mi is maximal w.r.t.
the second property, i.e. that there not exist Mj ,Mk ∈
P ′, j 6= k, such that (P ′ − {Mj ,Mk}) ∪ {Mj ∪Mk}
is a vertex partitioning.

The second condition states that each set Mi must be
indistinguishable by any vertex v in V −Mi, i.e. v is
either adjacent to every vertex in Mi, or it is adjacent
to no vertex of Mi. Each Mi is also called a module.

Problem 5.13 (Modular decomposition) Given a bi-
partite graph G = (V,U,E), find the vertex partition-
ing of G with initial partition {V, U}.

The modular decomposition of a bipartite graph can be
determined in linear time [10,18].

Theorem 5.14 Maximal autosets reduces to modular
decomposition.

Proof. The computation of the maximal autosets of a
given metaquery can be reduced to modular decompo-
sition of a bipartite graph.

Let Q = P1(X1) ← P2(X2), . . . , Pm(Xm) be a
metaquery. For each ordinary variable Y ofQ let g(Y )
denote a distinct node associated to Y , and for each lit-
eral scheme P (X) of Q let g(P (X)) denote a distinct
node associated to P (X).

Let G(Q) = (V, U,E) be the bipartite graph associ-
ated to Q defined as follows:

– V = {g(Y ) | Y ∈ X1 ∪ . . . ∪Xm};
– U = {g(P1(X1)), . . . , g(Pm(Xm))};
– E = {(g(Y ), g(Pi(Xi))) | ∀ variable Y ∈

Xi, 1 ≤ i ≤ m}.

Let M be the set of the modules of the modular de-
composition of G(Q), then

{g−1(m) | m ∈M ∧m ⊆ V } ∪ {{P} | P ∈ pv(Q)}

are the autosets of Q.
Indeed, let m ⊆ V be a module of the modular de-

composition of G(Q). It follows from the definition of
modular decomposition that for each pair v, u ∈ m,
N(v) = N(u) (note that, as the graph is bipartite,
for each w ∈ m, N(w) − m = N(w)), i.e. that
Q{g−1(v)} = Q{g−1(u)}. Furthermore, as m is maxi-
mal w.r.t. the above property, then {g−1(v) | v ∈ m}
is a maximal autoset of Q.
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uP(X,Y,U,V,W) uQ(X,Y,W) uQ(U,V,W)

vX vY vU vV vW

Fig. 4. The bipartite graph associated to
P (X, Y, U, V, W ) ← Q(X, Y, W ), Q(U, V, W ) by Theorem
5.14

Let S be a maximal ordinary autoset ofQ. Then, by
definition of autoset, X,Y ∈ S implies that Q{X} =
Q{Y }, thus N(g(X)) = N(g(Y )). As S is maximal,
then we can conclude that m = {g(X) | X ∈ S} is a
module of the modular decomposition of G(Q). 2

For example, the bipartite graph associated to Q =
P (X,Y, U, V,W ) ← Q(X, Y, W ), Q(U, V,W ) is
G = (V, U,E), with V = {vX , vY , vU , vV , vW },
U = {u1 = uP (X,Y,U,V,W ), u2 = uQ(X,Y,W ), u3 =
uQ(U,V,W )}, and E = {(vX , u1), (vY , u1), (vU , u1),
(vV , u1), (vW , u1), (vX , u2), (vY , u2), (vW , u2), (vU ,
u3), (vV , u3), (vW , u3)}. The modular decomposition
M of G is M = {{vX , vY }, {vU , vV }, {vW }, {u1},
{u2}, {u3}}. Thus the set of the maximal autosets of
Q is {{X,Y }, {U, V }, {W}, {P}, {Q}}.

6. Enumerating sets of variants

In this section the problem of enumerating sets of
non redundant variants of a metaquery is considered.
In particular, first the problem of deciding whether a
metaquery admits at least two distinct variants which
are redundant (see Section 6.1 in the following) is
taken into account, and then it is shown how to ef-
ficiently enumerate certain subsets of non redundant
variants (see Section 6.2).

We begin by giving the definition of renaming, a par-
ticular case of redundant variant.

Definition 6.1 (Renaming) Let Q be a metaquery, let
T ∈ {0, 1, 2}, T1 > T2, and let Q1 and Q2 be two
T1, T2-variants of Q. We say that Q2 is a renaming
of Q1 under the type-T2 semantics, if there exists a
variable mapping h of Q2 into Q1 such that Q1 =T2

h(Q2). We say that Q2 is a renaming of Q1 via h to
indicate the variable mapping h.

For example, consider the metaquery Q :

P (X,Y, Z)← Q(Y, X, W ), R(Z, W )

and the two 1, 0-variant Q1 = Q and Q2 :

P (Y,X, Z)← Q(X, Y, W ), R(Z,W )

of Q. Then, Q2 is a renaming of Q1 under type-0 se-
mantics, as Q1 = h(Q2), where h(X) = Y , h(Y ) =
X , and h(V ) = V for each other variable V occurring
into Q.

Definition 6.2 Let Q be a metaquery, and let T1, T2 ∈

{0, 1, 2}, T1 > T2. Then
=∨

T1,T2

Q denotes the set of all

the T1, T2-variants of Q that are not renamings under
the type-T2 semantics.

6.1. Deciding proper inclusions between sets of
variants

The following chain of inclusions holds

∨
T1,T2

Q ⊇
=∨

T1,T2

Q ⊇
≡∨

T1,T2

Q

However, it is important to state if the two inclusions
are proper. Indeed, assume that we want to compute the
set

∨≡
T1,T2

Q and that we know that the first inclusion
above is not proper. In this case all we have to do is to
enumerate the T1, T2-variants of Q.

We begin from the former inclusion.

Problem 6.3 (Self renaming metaquery) Given a
metaquery Q, and T1, T2 ∈ {0, 1, 2}, T1 > T2, check
if Q is T1, T2-self renaming, that is if there exist two
different T1, T2-variantsQ1 andQ2 ofQ, such thatQ2

is a renaming of Q1 under the type-T2 semantics.

It is easy to verify that a metaquery cannot be 2, 1-self
renaming. Indeed, letQ1 andQ2 be two different 2, 1-
variants of a metaquery Q. Then, by definition, there
exists an integer i, 1 ≤ i ≤ m, where m is the number
of literal schemes occurring into Q, such that the i-
th relational pattern P (X) of Q1 and the i-th relation
pattern P (Y) of Q2 are such that |X| 6= |Y|.

As for 1, 0-self renaming the following result holds.

Theorem 6.4 Let Q be a general metaquery. Then Q
is 1, 0-self renaming iff there exists a maximal autoset
S of Q such that |S| ≥ 2.
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Proof. (⇒) It follows from the definition of renaming
and from Theorem 5.7 that for each maximal autoset
S of Q we have h(S) = S. Let Q1 and Q2 be two
distinct 1, 0-variants ofQ such thatQ2 is a renaming of
Q1 via h under the type-0 semantics. By contradiction,
assume that for each maximal autoset S ofQ, |S| = 1.
Then h is the identity and Q1 and Q2 are the same
metaquery, a contradiction.
(⇐) Let S be a maximal autoset of Q such that |S| ≥
2. Let h′ : S → S be a bijection different from the
identity, and let h such that h(X) = h′(X) if X ∈ S,
and h(X) = X otherwise. Then h(Q) and Q are two
distinct 1, 0-variants ofQ such that h(Q) is a renaming
of Q under the type-0 semantics. 2

For example, let Q = P (X, Y, Z) ← Q(Y,Z, W ),
R(X,W ) be a general metaquery. {Y,Z} is a maxi-
mal autoset of Q, thus let h(Y ) = Z, h(Z) = Y , and
h(V ) = V otherwise. Then h(Q) = P (X, Z, Y ) ←
Q(Z, Y, W ), R(X,W ) is a renaming of Q under the
type-0 semantics and a 1, 0-variant of Q.

Next, we consider the 2, 0-self renaming problem.

Definition 6.5 (Trivial renaming) Let Q be a meta-
query, and let Q1 and Q2 be two distinct 2, 0-variants
of Q such that Q2 is a renaming under the type-0 se-
mantics of Q1 via h. We say that Q2 is a trivial re-
naming of Q1 under the type-0 semantics, if h is the
identity on the variables of Q.

For example, let Q = P (X,Y ) ← Q(Y, Z), and let
Q1 = P (A,B, Y, X) ← Q(Y, B,A, Z) and Q2 =
P (B,A, Y,X) ← Q(Y, A, B,Z) be two 2, 0-variants
of Q. Consider the variable mapping h of Q2 into Q1

such that h(A) = B, h(B) = A, and h(V ) = V oth-
erwise. Then, Q1 =0 h(Q2) and Q2 is a renaming of
Q1 under the type-0 semantics. Furthermore, Q2 is a
trivial renaming as it is the identity on the variables
occurring into Q.

Every general metaquery has 2, 0-variants that are
trivial renamings. Indeed, let Q be a general meta-
query and let P (X) be a relation pattern of Q. Then
the metaqueriesQ1 andQ2 obtained fromQ substitut-
ing the atom P (X) respectively with P (X, A, B) and
P (X, B,A), are 2, 0-variants of Q and also trivial re-
namings under the type-0 semantics.

Nevertheless, if we restrict to non trivial renamings
the following property holds.

Theorem 6.6 Let Q be a general metaquery. Then Q
is non trivially 2, 0-self renaming iff there exists a max-
imal autoset S of Q such that |S| ≥ 2.

Proof. The proof is analogous to that of Theorem 6.4.
2

Therefore, Theorems 6.4 and 6.6 permit us to decide if
the former inclusion is proper or not. Next, we consider

the second inclusion, namely,
=∨

T1,T2

Q ⊇
≡∨

T1,T2

Q.

Problem 6.7 (Graph automorphism) Given an undi-
rected graph G = (V, E), we say that it is automor-
phic if there exists a non trivial isomorphism ρ, i.e. an
isomorphism different from the identity, such that such
that G = ρ(G).

Problem 6.8 (Self redundant metaquery) Given a
metaquery Q, and T1, T2 ∈ {0, 1, 2}, T1 > T2, check
if Q is T1, T2-self redundant, that is, if there exist two
different T1, T2-variantsQ1 andQ2 ofQ, such that (1)
Q1 ≡T2 Q2 and (2) Q2 is not a renaming of Q1.

Theorem 6.9 Self redundant general metaquery is re-
ducible to graph automorphism.

Proof. Let Q be a general metaquery. To show that
contrG1(Q) is automorphic iff Q is T1, T2-self redun-
dant, for each T1, T2 ∈ {0, 1, 2}, T1 > T2, the proof
proceeds as in Theorem 5.2. 2

Therefore, Theorem 6.9 permit us to decide if the latter
inclusion is proper or not.

6.2. Efficiently enumerating sets of variants

This section reports two results concerning efficient
enumeration of set of variants. First, it is shown that the
set

∨=
1,0Q is efficiently computable (see the following

Theorem 6.10), and then it is shown that the set
∨≡

2,0Q
can be efficiently generated from the set

∨≡
1,0Q (see

Theorem 6.13 in the following).

We begin by showing that the set
=∨
1,0

Q is efficiently

computable.

Theorem 6.10 Let Q :

P1(X1)← P2(X2), . . . , Pm(Xm)

be a general metaquery, let S1, S2, . . . , Sn be the
maximal ordinary autosets of Q, let j1, j2, . . . , jn ∈
{1, . . . , m} such that Si ⊆ Xji , for each i =
1, 2, . . . , n, and let Π : ov(Q) → {1, . . . , |ov(Q)|} be
a bijection.
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LetM be the set of the 1, 0-variants of Q obtained
by (1) putting the ordinary variables of the i-th max-
imal autoset Si into the ji-th relational pattern of Q
according to the order Π (i.e., if Y1, Y2 ∈ Si and
Π(Y1) < Π(Y2), then Y1 precedes Y2), and (2) permut-
ing all the other variable occurrences in the remaining
relational patterns. Then

M =
=∨
1,0

Q

Proof. First, we prove that
=∨
1,0

Q ⊇ M. Any meta-

query Q1 ∈ M is a 1, 0-variant of Q by construc-
tion. By absurd, assume that there exists a metaquery
Q2 ∈ M different from Q1 such that Q2 is a re-
naming of Q1 via h under the type-0 semantics. Let
Q1 = P1(Y1) ← P2(Y2), . . . , Pm(Ym), and Q2 =
P1(Z1)← P2(Z2), . . . , Pm(Zm).

As h maps each maximal autoset into itself, then
each ordinary autoset ofQ occupies the same positions
among the arguments of each pair Pi(Yi), Pi(Zi), for
each i = 1, . . . , m (otherwise it cannot be Pi(Yi) =0

Pi(Zi)). Then, for each maximal autoset Si of Q, 1 ≤
i ≤ n, the two occurrences of Si into the pair Pji(Yji),
h(Pji(Zji)) agree both for position and order. Thus, it
is the case that h(Si) = Si, for each i = 1, . . . , n. We
can therefore conclude that Q1 = Q2, a contradiction.

It remains to prove thatM ⊇
=∨
1,0

Q. We show that

for each Q1 ∈
∨
1,0

Q there exists a symbol mapping h

such that h(Q1) ∈M.
Let di(ki) the ki-th variable of Si according to the

order defined in the ji-th literal scheme ofQ1, for each
i = 1, . . . , n, ki = 1, . . . , |Si|, and let ci(ki) the ki-
th variable of Si according to the order Π, for each
i = 1, . . . , n, ki = 1, . . . , |Si|. Let hi be the bijection
from Si to Si such that hi(di(ki)) = ci(ki), for each
i = 1, . . . , n, ki = 1, . . . , |Si|.

Consider the symbol mapping h of Q into Q such
that h(Si) = hi(Si), for each i = 1, . . . , n, and
h(V ) = V otherwise. It is easy to verify that h(Q1) ∈
M. 2

Next, we deal with the size of the set
=∨
1,0

Q.

Proposition 6.11 LetQ be a general metaquery, let ai

be the arity of the i-th relation pattern of Q, for each
i = 1, . . . ,m, where m is the number of relational pat-

terns occurring in Q, let S1, S2, . . . , Sn be the maxi-
mal ordinary autosets ofQ, and let sj = |Sj |, for each
j = 1, 2, . . . , n. Then∣∣∣∣∣

=∨
1,0

Q

∣∣∣∣∣ =
a1!a2! . . . ak!
s1!s2! . . . sn!

Proof. This property follows immediately from Theo-
rem 6.10. 2

For example, letQ = P (X, Y )← Q(X, Y, Z), R(Z).
The maximal ordinary autosets of Q are S1 = {X, Y }
and S2 = {Z}. Let j1 = 1, j2 = 3, and let Π(X) = 1,

Π(Y ) = 2, and Π(Z) = 3, then
=∨
1,0

Q is the following

set:

Q1 = P (X,Y )← Q(X,Y, Z), R(Z)
Q2 = P (X,Y )← Q(X,Z, Y ), R(Z)
Q3 = P (X,Y )← Q(Y, X, Z), R(Z)
Q4 = P (X,Y )← Q(Y, Z, X), R(Z)
Q5 = P (X,Y )← Q(Z,X, Y ), R(Z)
Q6 = P (X,Y )← Q(Z, Y, X), R(Z)

Consider a 1, 0-variant Q′ of Q not appearing in the
previous set, e.g.Q′ = P (Y, X)← Q(Y,X, Z), R(Z).
Then, d1(1) = Y , d1(2) = X , d2(1) = Z, c1(1) =
X , c1(2) = Y , and c2(1) = Z. Define h as h(Y ) =
h(d1(1)) = c1(1) = X , h(X) = h(d1(2)) =
c1(2) = Y , h(Z) = h(d2(1)) = c2(1) = Z,
and h(P ) = P , h(Q) = Q, and h(R) = R. Then
h(Q′) = P (X, Y )← Q(X, Y, Z), R(Z) which corre-
sponds to the metaquery Q1.

Next we show that the set
≡∨
2,0

Q is efficiently com-

putable from the set
≡∨
1,0

Q.

Definition 6.12 (Expansion of a metaquery) Let
P (X) and P (Y) be two relational patterns. We say
that P (Y) is an expansion of P (X) if X = X1, . . . , Xn

and Y = Y1, X1,Y2, X2,Y3, . . . ,Yn, Xn,Yn+1,
where each Yi, i = 1, . . . , n + 1, is a possibly empty
sequence of padding ordinary variables.

Let Q1 = P1(X1) ← P2(X2), . . . , Pm(Xm) and
Q2 = P1(Y1) ← P2(Y2), . . . , Pm(Ym) be two
metaqueries. We say that Q2 is an expansion of Q1

if Pi(Yi) is an expansion of Pi(Xi), for each i =
1, . . . , m.

Theorem 6.13 Let Q be a general metaquery, and let
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M =
∪

Q′∈
∨≡

1,0
Q

{Q′′ | Q′′ is an expansion of Q′}

ThenM =
≡∨
2,0

Q.

Proof. First we prove that
∨≡

2,0Q ⊇ M. Any meta-
query Q1 ∈ M is a 2, 0-variant of Q by construc-
tion. By absurd, assume that there exists a metaquery
Q2 ∈ M different from Q1 such that Q1 and Q2

are redundant via h and π under the type-0 semantics.
Let Q1 = P1(X1) ← P2(X2), . . . , Pm(Xm), and
Q2 = P1(Y1)← P2(Y2), . . . , Pm(Ym). Let Ai (Bi

resp.) be the set of isolated variables occurring into Xi

(Yi resp.), for each i = 1, . . . , m.
By definition of general metaquery under type-2 se-

mantics, there are no isolated variables into Q, then
h maps each maximal autoset Bi of Q2 into a maxi-
mal autoset Aji , for each i = 1, . . . , m. Let Q1 and
Q2 be an expansion of Q′

1 and Q′
2 respectively, where

Q′
1 and Q′

2 belong to
∨

1,0Q. Then it is the case that
Q′

1 =0 h(π(Q′
2)). Thus Q′

1 and Q′
2 are two redun-

dant 1, 0-variants of Q, a contradiction.
Now we prove thatM ⊇

∨≡
2,0Q. We show that for

each Q1 ∈
∨

2,0Q there exists Q2 ∈ M such that
Q1 ≡0 Q2. Let Q1 be an expansion of Q′

1, with Q′
1 ∈∨

1,0Q, and letQ′
2 be the unique 1, 0-variant ofQ such

that Q′
2 ∈

∨≡
1,0Q and Q′

1 ≡0 Q′
2. Then, by definition

ofM, it there exists an expansion Q2 of Q′
2 such that

Q2 ∈M and Q1 ≡0 Q2. 2

Proposition 6.14 Let b the maximum arity of a rela-
tion into the database, let m be the number of lit-
eral schemes occurring into the metaquery, and let ai,
i = 1, . . . , m, be the arity of the i-th literal scheme of
the metaquery. Then∣∣∣∣∣

≡∨
1,0

Q

∣∣∣∣∣ ·
m∏

i=1

 b∑
j=ai

(
j

ai

)
is an upper bound to the cardinality of the subset of∨≡

2,0Q including relational patterns of arity at most b.

Proof. This property follows immediately from Theo-
rem 6.13. 2

For example, consider the metaqueryQ = P (X, Y )←
Q(X, Y, Z), R(Z), and let b = 3. As in this case∨≡

1,0Q =
∨=

1,0Q, then the cardinality is

6 ·
[(

2
2

)
+

(
3
2

)]
·
[(

3
3

)]
·[(

1
1

)
+

(
2
1

)
+

(
3
1

)]
=

6 · (1 + 3) · 1 · (1 + 2 + 3) = 6 · 4 · 6 = 144

and the set consists in the metaqueries L1 ← L2, L3

where L1, L2 and L3 are one of the following rela-
tional patterns:

L1 L2 L3

Q(X, Y, Z) R(Z)
P (X,Y ) Q(X, Z, Y ) R(B, Z)

P (A, X, Y ) Q(Y, X,Z) R(Z, B)
P (X,A, Y ) Q(Y, Z,X) R(B, C,Z)
P (X, Y, A) Q(Z, X, Y ) R(B, Z,C)

Q(Z, Y,X) R(Z, B,C)

while the subset of
∨
2,0

Q containing relation patterns

of arity at most 3 includes

(2! + 3!)× 3!× (1! + 2! + 3!) = 8× 6× 9 = 432

metaqueries.

7. The algorithm

In this section we present the algorithm Instantiation-
Stage that enumerates all the non redundant consistent
instantiations of a metaquery. This algorithm solves
the instantiation stage of the process of answering a
metaquery, while for the subsequent filtration stage, al-
gorithms presented in [7,8] can be adopted. We note
that in [7,8] an algorithm is presented, based on CSP
techniques, for the filtration stage that computes all the
consistent instantiations of a metaquery, thus also the
redundant ones.

The algorithm Instantiation-Stage exploits Theorem
4.20 in order to avoid the computation of redundant
instantiations. Indeed, by Theorem 4.20 the instantia-
tions of two non redundant variants of a general meta-
query are always non redundant. Thus, the algorithm
computes in the first place the set of all the non re-
dundant 1, 0-variants of the input metaquery, and then
computes all the instantiations of each variant (under
the type-0 semantics). First, enumeration of renam-
ing is efficiently avoided using the algorithm described
in Theorem 6.10. Then, in order to discard redundant
1, 0-variants, an algorithm for graph isomorphism is
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used, exploiting Theorem 5.2 and Corollary 5.10. The
instantiation of the non redundant 1, 0-variants, ob-
tained as explained above, is done using algorithms
for the CSP problem. Theorem 6.13, showing that the
non redundant 2, 0-variants of a metaquery are effi-
ciently computable from the set of its non redundant
1, 0-variants, is exploited here. Indeed, during the in-
stantiation, each literal scheme P (X) is instantiated to
an atom p(Y) provided that Y is an expansion of X
(see Theorem 6.13 for further details), thus efficiently
avoiding the enumeration of redundant 2, 0-variants.
Computed instantiations are then passed to the subse-
quent filtration stage.

Next we comment on the pseudo-code of the algo-
rithm Instantiation-Stage and of the functions Mini-
mize and Instantiates (see Figures 5, 6, and 7). Figure 5
shows the algorithm, which receives in input a general
metaquery Q, a database scheme DBS, and the type
of semantics T ∈ {1, 2}.

First, Instantiation-Stage determines the autosets of
Q using an algorithm for the modular decomposition
of a bipartite graph (see Theorem 5.14).

Then, it decides ifQ is T, 0-self redundant (see The-
orem 6.9). In any case, the set

∨=
1,0Q is calculated as

in Theorem 6.10. If Q is T, 0-self redundant then the
set

∨=
1,0Q is minimized w.r.t. the redundance between

variants, calling the function Minimize, reported in Fig-
ure 6, which exploits the results of Theorem 5.2 and
Corollary 5.10.

The function Instantiate, reported in Figure 7, in-
stantiates the metaqueries of the setM. This function
builds a sequence σ0, σ1, . . . , σm of partial instantia-
tions of Q, where each σi is an instantiation defined
on a subset of i literal schemes of the metaquery Q.
In particular, we say that σi is consistent if the instan-
tiated part of the metaquery σi(Q) is consistent w.r.t.
the database schema DBS. The function Instantiate
can be implemented using CSP techniques [11]. For
T = 1, Instantiate searches for all the consistent type-
0 instantiations of Q. For T = 2, each literal scheme
P (X) is mapped into an atom p(Y) provided that Y is
an expansion of X. That is, Theorem 6.13 is exploited
in order to efficiently enumerate all the metaqueries in
the set

∨≡
2,0.

Finally, we note that, some variants of the input
metaquery Q could admit type-0 instantiations that
are redundant. For example, consider the metaquery
Q = P (X) ← Q(X, Y ), R(Y,X) and its 1, 0-
variant Q′ = P (X) ← Q(X,Y ), R(X, Y ). The in-
stantiations σ1 and σ2 of Q′ such that σ1(Q′) =
a(X) ← b(X,Y ), c(X, Y ) and σ2(Q′) = a(X) ←

c(X, Y ), b(X, Y ) are clearly redundant. On the con-
trary, the 1, 0-variant Q′′ = P (X) ← Q(Y,X), R(X ,
Y ) of Q has no redundant type-0 instantiations. Thus,
in order to discard these redundant instantiations, ifQ′

is self redundant under type-0 semantics, also the set of
its instantiations must be minimized by using again the
function Minimize (see Figure 5, step 4, the function ν
there employed is defined in Theorem 5.3).

The following theorem proves correctness of the al-
gorithm Instantiation-Stage.

Theorem 7.1 Given a general metaquery Q and T ∈
{0, 1, 2}, the set of instantiations Σalg, computed by
the algorithm Instantiation-Stage, is the smallest sub-
set of Σc(Q, DBS, T ) such that, for each database
DB on the schema DBS, and, for each index I ∈ I
and threshold kI ∈ (0, 1], it holds that

Σalg ⊇ Σ̂(Q, DB, I, kI , T ).

Proof. It follows from the description above done, that
the algorithm Instantiation-Stage computes the set

Σalg =
∪

Q′∈
∨≡ Q

Σ̂c(Q′, DBS, 0)

where Σ̂c(Q, DBS, T ) denotes the smallest subset
of Σc(Q, DBS, T ) such that Σc(Q, DBS, T ) ≡T

Σ̂c(Q, DBS, T ).
W.l.o.g. we assume that I(σ(Q)) > 0 only if σ is a

consistent instantiation of Q3, i.e. that Σ̂(Q, DBS, T )
⊇ Σ̂(Q, DB, I, kI , T ). Thus, by Theorem 4.20, Σalg ⊇
Σ̂(Q, DB, I, kI , T ).

It remains to prove that there exists a database
DBalg on the schema DBS, an index I , and a thresh-
old kI , such that Σalg = Σ̂(Q, DBalg, I, kI , T ). The
database DBalg can be obtained by “grounding” the
set Σalg, as described in the following. For each in-
stantiation σ ∈ Σalg, let gσ denote a bijection defined
on the set of variables occurring into σ(Q), such that,
for each variable V of σ(Q), gσ(V ) is a new constant
associated to V . Let L be a literal scheme of Q, then
gσ(L) denotes the ground atom obtained from L by
substituting each ordinary and predicate variable V of
L with gσ(V ). Then

DBalg =
∪

σ∈Σalg

{gσ(L) | L occurs into σ(Q)}.

3Note that, if this assumption does not hold, then Theorem is still
valid for Σalg ⊇ Σc(Q, DBS, T ) ∩ Σ̂(Q, DB, I, kI , T ).



F. Angiulli / Enumerating Consistent Metaquery Instantiations 23

Instantiation-Stage(Q, DBS, T )

1. determine the autosets of Q
2. if Q is not T, 0-self redundant

then set M :=
∨=

1,0
Q

else set M := Minimize(
∨=

1,0
Q, 0)

3. Σ := ∅
4. for each Q′ ∈ M,

if Q′ is self redundant under type-0 semantics then set
Σ := Σ ∪ {σ | ν(σ(Q′)) ∈ Minimize({ν(σ(Q′)) |
σ ∈ Instantiate(Q′, DBS, T )})}
else set Σ := Σ ∪ Instantiate(Q′, DBS, T )

5. return Σ and exit

Fig. 5. The algorithm Instantiation-Stage

By construction, database DBalg is such that, for each
σ ∈ Σalg, cnf(σ(Q)) > 0 on DBalg, and thus Σalg =
Σ̂(Q, DBalg, cnf, 0, T ). 2

Before concluding this section, we discuss how to use
the algorithm Instantiation-Stage when a metaquery
contains atoms. Given a metaquery Q, let gen(Q)
denote the metaquery obtained from Q by remov-
ing the atoms occurring into Q4. Then, in order to
compute the consistent instantiations of Q, the al-
gorithm Instantiation-Stage is executed on the meta-
query gen(Q). Types associated to variables occur-
ring into atoms of Q are also passed to the algorithm
Instantiation-Stage and exploited by the function In-
stantiate in order to speed-up building of consistent in-
stantiations.

For example, let Q = P (X,Y ) ← Q(X, Y ), r(Y ),
then gen(Q) = P (X, Y )← Q(X, Y ), while the vari-
able Y is constrained to assume the type of the unique
attribute of the relation r.

8. Conclusions

This work deals with the problem of determining all
the consistent instantiations of a metaquery. In partic-
ular, it is presented an algorithm for the instantiation
stage of the process of answering a metaquery. In or-
der to reduce the computational cost associated to the
subsequent filtration stage, the algorithm exploits the
here introduced notion of redundancy between instan-
tiations to filter out in the first place those redundant in-
stantiations. A number of results concerning this prop-
erty are presented, and then exploited in an algorithm

4Note that, gen(Q) might be a metaquery with an empty head.
This does not affect the execution of the algorithm.

Minimize(M, T )

1. set Ψ := ∅
2. if M = ∅ then go to 6
3. take a metaquery Q belonging to M and set M :=

M−{Q}
4. if there not exists 〈Q′,G′〉 in Ψ such that G′ is

isomorphic to contrGT (Q), then set Ψ := Ψ ∪
{〈Q, contrGT (Q)〉}

5. go to 2
6. M̂ := ∅
7. for each 〈Q′,G′〉 in Ψ, set M̂ := M̂ ∪ {Q′}
8. return M̂ and exit

Fig. 6. The function Minimize

Instantiate(Q, DBS, T )

1. set σ0 := ∅, and i := 1
2. (T = 1) if exist a literal scheme P (X) of Q not in the

domain of σi−1, and a relation scheme, with name p,
in DBS such that σi−1 ∪ σ′ is consistent, where σ′ =
{〈P (X), p(X)〉}, set σi := σi−1 ∪ σ′ and i := i + 1
(T = 2) if exist a literal scheme P (X) of Q not in
the domain of σi−1, a relation scheme, with name p, in
DBS and an expansion Y of X such that σi−1 ∪ σ′

is consistent, where σ′ = {〈P (X), p(Y)〉}, set σi :=
σi−1 ∪ σ′ and i := i + 1

3. if i < n then set i := i + 1 and goto 2 else return σn

and exit

Fig. 7. The function Instantiate

that outputs the set of instantiations minimal w.r.t. the
property of redundancy between instantiations. Algo-
rithms for the instantiation stage presented in litera-
ture compute all the instantiations of a metaquery, thus
also the redundant ones. The computational complex-
ity analysis of the problem of computing the number
of instantiations of a metaquery – that is strictly related
to the task of enumerating consistent instantiations, is
also dealt with into account, showing that this problem
is #P-hard.
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