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Abstract

Default logics are usually used to describe the regular behavior and normal properties of domain elements. In this paper we suggest,
conversely, that the framework of default logics can be exploited for detecting outliers. Outliers are observations expressed by sets
of literals that feature unexpected semantical characteristics. These sets of literals are selected among those explicitly embodied
in the given knowledge base. Hence, essentially we perceive outlier detection as a knowledge discovery technique. This paper
defines the notion of outlier in two related formalisms for specifying defaults: Reiter’s default logic and extended disjunctive logic
programs. For each of the two formalisms, we show that finding outliers is quite complex. Indeed, we prove that several versions of
the outlier detection problem lie over the second level of the polynomial hierarchy. We believe that a thorough complexity analysis,
as done here, is a useful preliminary step towards developing effective heuristics and exploring tractable subsets of outlier detection
problems.
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1. Introduction

This paper is about detecting outliers. In this work, outliers are unexpected observations, e.g., strange characteristics
of individuals, in a given application domain. Exceptionality is determined here with respect to a given trustable
knowledge base, with which a given set of elements does not comply. The issue that we address is how to locate such
unusual elements automatically.

A first step towards automatically detecting outliers is to state their formal definition. In this work, it is assumed that
the given knowledge base is expressed using a default reasoning language and hence we formalize our definition of
outliers in this framework. The languages mainly dealt with are propositional default logics and extended disjunctive
logic programs.
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Default logic was originally developed as a tool for working with incomplete knowledge. Default rules allow one
to describe a normal behavior of a system and to draw consequent conclusions. As such, default rules can also be
exploited for detecting outliers – observations that are unexpected according to the default theory at hand. This is
the basic idea behind this paper. We refer to outliers as sets of observations that demonstrate some properties con-
trasting with those that can be logically “justified” according to the given knowledge base. Along with outliers, their
“witnesses” are singled out– those unexpected properties that characterize outliers.

To illustrate, some informal application examples for outlier detection are described below.
Using outliers for diagnosis of computer hardware. Suppose that it usually takes about four seconds to download

a gigabyte file from a server, but one day the system becomes slower, instead, eight seconds are needed to perform
the same task. While eight seconds may indicate a good performance, it is, nonetheless, helpful to find the source
of the delay in order to prevent more critical faults in the future. In this case, the download operation is the outlier
while the delay is its witness.

Mechanical failure. Assume that someone’s car brakes are making a strange noise. Although they seem to be func-
tioning properly, this is not a normal behavior and the car is brought in for servicing. In this case, the car brakes are
the outlier and the noise is a witness for it.

Knowledge base integrity. If an abnormal property is discovered in a database, the source that reported this informa-
tion would have to be checked. Detecting abnormal properties, that is, detecting outliers, can also lead to an update
of default rules in a knowledge base. For example, suppose we have the rule that birds fly, and we observe a bird
that does not fly. This occurrence of such an outlier in the theory would be reported to the knowledge engineer. The
engineer investigates the case, finds out that the bird is actually a penguin, therefore he updates the knowledge base
with the default “penguins do not fly.”
According to our approach, exceptions are not explicitly recorded in the knowledge base as “abnormals,” as is often

done in logical-based abduction [47,16,23]. Rather, their “abnormality” is singled out precisely because some of the
properties characterizing them cannot be justified within the given theory.

In this paper we formally define outliers in both the related formalisms of Reiter’s default logic and Extended
disjunctive logic programming (EDLP).

Reiter’s Default Logic is a powerful nonmonotonic formalism to deal with incomplete information, while logic
programming is a practical tool that is widely employed in KR&R. The paper mostly deals with the propositional
fragment of these logics. However, first-order default theories shall be also briefly discussed in the paper (see Section
5 below).

In the logic programming framework, we focus on Answer Set Semantics, which is used in most advanced systems
for knowledge representation [38,43,40]. Extended logic programs (ELP) under Answer Set Semantics allow both
negation as failure and classical negation to be used. These programs can be naturally embedded into default theories
and therefore can be considered as a subset of default logic. As a consequence, our results for default theories carry
over quite simply to ELPs. However, unlike ELP, extended disjunctive logic programs (EDLP) under Answer Set
Semantics, in which also head-disjunction is allowed, cannot be viewed as a subset of default logic, although default
logic in its full volume does include disjunction. Indeed, part of the motivation for developing disjunctive logic pro-
gramming lies in the limitations of default logic in handling disjunctive knowledge (see the paper by Poole [47]). In
this context, EDLP can be considered as a convenient tool for representing and manipulating complex knowledge [38]
due to its declarativity and expressive power.

In what follows, we first introduce our formal definition of outliers. Then, we analyze the complexities involved
in incorporating the outlier detection mechanism into knowledge bases expressed in default logic and extended dis-
junctive logic programs. We believe that a thorough complexity analysis is a useful step towards singling out the
more complex subtasks involved in outlier detection. This first step is conducive to designing effective algorithms for
implementation purposes.

According to the view adopted in this work, the witness that an observation is an outlier is a property or a behavior
that is explicitly the opposite of what is expected. Representing such contradicting properties requires the usage of
classical negation. Both default logic and extended logic programs make use of classical negation. Hence, these
two languages represent a natural setting for outlier detection. A different approach, which does not require that the
negation of the exceptional property is explicitly inferred but, rather, that it is simply not entailed by a logic program,
is taken in [5]. As explained thoroughly in this paper, the anomalies that can be singled out by the definition of [5]
are quite different than the outliers detected by the work presented here. This is mirrored in the different complexity
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figures we obtained: most of the outlier detection problems investigated here lie at the third level of the polynomial
hierarchy, whereas the most complex of the problems considered in [5] are contained in its second level. In the sequel
we will further elaborate on these differences.

The rest of this paper is organized as follows: Section 2 provides preliminary definitions and Section 3 defines
outliers and related notions. Section 4 discusses the complexity of finding outliers in general propositional as well
as in disjunction-free default logics. Section 5 deals with first-order defaults. Section 6 discusses related work – in
particular, the relationship between outlier detection and abduction. Finally, Section 7 draws conclusions.

2. Preliminary Definitions

In this section we briefly review preliminary definitions used in default logic and extended (disjunctive) logic
programs. Note that only the propositional fragment of these logics is considered here. Outlier detection in first-order
default languages shall be briefly discussed in Section 5. Thus, whenever a default theory or a logic program with
variables is used, it is referred to as an abbreviation of its grounded version.

2.1. Default Logic

Default logic was first introduced by Reiter in a first-order setting [50]. Next we recall basic definitions concerning
the propositional fragment of default logic. Let T be a propositional theory and S a set of propositional formulas.
Then, we denote by T ∗ the logical closure of T and by ¬S the set {¬(s)|s ∈ S}. A set of literals L is inconsistent if,
for some literal ` ∈ L, ¬` ∈ L.

A propositional default theory ∆ is a pair (D,W ) consisting of a set W of propositional formulas and a set D of
default rules. In this paper we deal with finite default theories. A default theory ∆ = (D,W ) is finite if both the set
of default rules D and the set of propositional formulas W are finite. A default rule δ has the form

α : β1, . . . , βm
γ

(1)

where α, each βi, 1 ≤ i ≤ m, and γ are propositional formulas. In particular, α is called the prerequisite, β1, . . . , βm
are called the justifications, and γ is called the consequent (or conclusion) of δ. The prerequisite may be missing
but the justification and the consequent are required (an empty justification is tantamount to have the identically true
literal true [49] specified in its place). If the conclusion of a default rule is included in its justification, the rule is
called semi-normal [25], while if the conclusion is identical to the justification the rule is called normal. A default
theory containing only (semi-)normal defaults is called (semi-)normal. Given a default rule δ, pre(δ), just(δ), and
concl(δ) denote the prerequisite, justification, and consequent of δ, respectively. Analogously, given a set of default
rules D = {δ1, . . . , δn}, pre(D), just(D), and concl(D) denote , respectively, the sets {pre(δ1), . . . , pre(δn)},
{just(δ1), . . . , just(δn)}, and {concl(δ1), . . . , concl(δn)}.

A propositional default theory ∆ = (D,W ) is disjunction free (DF for short) [33], if W is a set of literals, and
pre(δ), just(δ), and concl(δ) are conjunctions of literals.

The informal meaning of a default rule δ can be stated as follows: If pre(δ) is known to hold and if it is consistent
to assume just(δ), then infer concl(δ). The formal semantics of a default theory ∆ is defined in terms of extensions,
which denote maximal sets of conclusions that can be drawn from ∆. Thus, E is an extension for a theory ∆ = (D,W )
if it satisfies the following set of equations:
– E0 =W ,
– for i ≥ 0, Ei+1 = E∗

i ∪
{
γ | α:β1,...,βm

γ ∈ D,α ∈ Ei,¬β1 6∈ E , . . . ,¬βm 6∈ E
}

,

– E =
∞∪
i=0

Ei.

An extension E of a finite propositional default theory ∆ = (D,W ) can be finitely characterized through the setDE of
the generating defaults for E w.r.t. ∆ [50,59]. In fact, [59] shows that a finite propositional default theory ∆ = (D,W )
has an extension E iff there exists a set DE ⊆ D, the generating defaults for E w.r.t. ∆, that can be partitioned into a
finite number of strata D(0)

E , D
(1)
E , . . . , D

(n)
E , such that:
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– D
(0)
E = {δ | δ ∈ DE , pre(δ) ∈W ∗},

– for each i, 1 ≤ i ≤ n, D(i)
E = {δ | δ ∈ DE −

∪i−1
j=0D

(j)
E , pre(δ) ∈ (W ∪ concl(

∪i−1
j=0D

(j)
E ))∗},

– (∀δ ∈ DE)(∀β ∈ just(δ))(¬β 6∈ (W ∪ concl(DE))
∗), and

– (∀δ ∈ D)(pre(δ) ∈ (W ∪ concl(DE))
∗ ∧ (∀β ∈ just(δ))(¬β 6∈ (W ∪ concl(DE))

∗ ⇒ δ ∈ DE).
If such a set DE exists, then E = (W ∪ concl(DE))

∗ is an extension of ∆.
For the case of DF theories, it is useful to rewrite the definition of extension, as done in [33]. Let ∆ = (D,W ) be a

DF default theory. Then E is an extension of ∆ if there exists a sequence of defaults δ1, ..., δn from D and a sequence
of sets E0, E1, ..., En, such that for all i > 0:
– E0 =W ,
– Ei = Ei−1 ∪ concl(δi),
– pre(δi) ⊆ Ei−1,
– ( 6 ∃c ∈ just(δi))(¬c ∈ En),
– ( 6 ∃δ ∈ D)(pre(δ) ⊆ En ∧ concl(δ) 6⊆ En ∧ ( 6 ∃c ∈ just(δ))(¬c ∈ En)),
– E is the logical closure of En
where En is called the signature set of E and is denoted lits(E) and the sequence of rules δ1, ..., δn is the set DE of
generating defaults of E .

Although default theories are nonmonotonic, normal default theories satisfy the property of semi-monotonicity (see
Theorem 3.2 of [50]). That is: Let ∆ = (D,W ) and ∆′ = (D′,W ) be two default theories such that D ⊆ D′; then
for each extension E of ∆ there is an extension E′ of ∆′ such that E ⊆ E′.

A default theory may not have any extensions, like in the theory ({ :β
¬β }, ∅). Then, a default theory is called coherent

if it has at least one extension, and incoherent otherwise. Normal default theories are coherent. A coherent default
theory ∆ = (D,W ) is called inconsistent if it has just one extension which is inconsistent. By Theorem 2.2 of [50],
the theory ∆ is inconsistent iff W is inconsistent.

The entailment problem is one of the basic problems in KR formalisms. For default theories, it is as follows: Given
a default theory ∆ and a propositional formula φ, does every extension of ∆ contain φ? In the affirmative case, we
write ∆ |= φ. For a set of propositional formulas S, we analogously write ∆ |= S to denote (∀φ ∈ S)(∆ |= φ). The
entailment realizes the form of reasoning called skeptical (or cautious) reasoning [18].

2.2. Extended Disjunctive Logic Programs

A literal is an expression of the form ` or ¬` where ` is a propositional letter and the symbol “¬” denotes classical
negation. A propositional EDLP is a collection of rules of the form

L1| . . . |Lk ← Lk+1, . . . , Lm, not Lm+1, . . . , not Ln

where n,m, k ≥ 0, the symbol “not ” denotes negation by default and each Li is a literal. If k = 0, then the rule is
called an integrity clause. If 0 ≤ k ≤ 1 then the rule is said to be non-disjunctive. A propositional ELP is a collection
of non-disjunctive rules.

An EDLP is given semantics using answer sets [26], which are defined as follows: Let Lit(P ) denote the set of
literals obtained using the propositional letters occurring in P . By a context [12] we mean any subset of Lit(P ). Let
P be a negation-by-default-free EDLP. A context is S closed under P if, for each rule L1| . . . |Lk ← Lk+1, . . . , Lm
in P , if Lk+1, . . . , Lm ∈ S then, for some i = 1, . . . , k, Li ∈ S. An answer set of P is any minimal context S such
that (1) S is closed under P and (2) if S is inconsistent, then S = Lit(P ).

For general EDLPs answer sets are defined as follows: Let the reduct of P w.r.t. the context S, denoted by
Red(P, S), be the EDLP obtained from P by deleting (i) each rule that has not L in its body, for some L ∈ S,
and (ii) all remaining subformulas of the form not L from rule bodies. Then, any context S which is an answer set of
Red(P, S) is an answer set of P .

The collection of all consistent answer sets of an EDLP P is denoted ANSW(P ). An EDLP P is ANSW-consistent
iff ANSW(P ) 6= ∅. An EDLP P entails a propositional formula F , written P |= F , if F ∈ S∗ for each S ∈
ANSW(P ). P |= G, for a set of propositional formulas G, means that (∀F ∈ G)(P |= F ).
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2.3. Complexity Theory

Some basic definitions in complexity theory are recalled next, particularly that of the polynomial time hierarchy.
The reader is referred to [31,45] for more details.

Decision problems are mappings from strings (encoding the input instance over a suitable alphabet) to {“yes”, “no”}.
The language associated with a decision problem is the set of all and only the strings over the alphabet such that the
decision problem outputs “yes” on them. A (possibly nondeterministic) Turing machine M answers a decision prob-
lem if on a given input x, (i) a branch of M halts in an accepting state iff x is a “yes” instance, and (ii) all the branches
of M halt in some rejecting state iff x is a “no”instance.

The class P is the set of decision problems that can be answered by a deterministic Turing machine in polynomial
time. The class of decision problems that can be solved by a nondeterministic Turing machine in polynomial time is
denoted by NP, while the class of decision problems whose complementary problem is in NP, is denoted by co-NP.

More generally, classes ΣP
k and ΠP

k , which form the polynomial hierarchy, are defined as follows: ΣP
0 = ΠP

0 = P
and for all k ≥ 1, ΣP

k = NPΣP
k−1 , and ΠP

k = co-ΣP
k . ΣP

k is modeled computability by a nondeterministic polynomial
time Turing machine which may use an oracle for solving a problem in ΣP

k−1. An oracle is, loosely speaking, a
subprogram that can be run with a constant computational cost. Thus, NP = ΣP

1 , and co-NP = ΠP
1 . The class DP

k ,
k ≥ 1, is the class of problems that are defined as the conjunction of two independent problems, one from ΣP

k and
one from ΠP

k . That is, a problem associated with a language L is in DP
k if and only if there are two languages L1,

associated with a problem in ΣP
k , and L2, associated with a problem in ΠP

2 , such that L = L1 ∩ L2. Note that, for all
k ≥ 1, ΣP

k ⊆ DP
k ⊆ ΣP

k+1.
Finally, we need to recall the notion of reduction. A decision problem A1 is polynomially reducible to a decision

problem A2 if there is a polynomial time computable function h such that for every x, h(x) is defined and A1 output
“yes” on input x iffA2 outputs “yes” on input h(x). A decision problemA is complete for the class C of the polynomial
hierarchy iff A belongs to C and every problem in C is polynomially reducible to A.

A well-known ΣP
k -complete problem is to decide the satisfiability of a formula QBEk,∃, that is, a formula of the

form ∃X1∀X2 . . . QXkf(X1, . . . , Xk), where Q is ∃ if k is odd and ∀ if k is even, X1, . . . , Xk are disjoint sets of
variables, and f(X1, . . . , Xk) is a propositional formula in conjunctive normal form if k is odd and in disjunctive
normal form if k is even, on the set of variablesX1, . . . , Xk. Analogously, deciding the validity of a formula QBEk,∀,
that is a formula of the form ∀X1∃X2 . . . QXkf(X1, . . . , Xk), where Q is ∀ if k is odd and is ∃ if k is even, and
f(X1, . . . , Xk) is a propositional formula in disjunctive normal form if k is odd and in conjunctive normal form if k
is even, on the set of variables X1, . . . , Xn, is complete for ΠP

k . Finally, deciding the conjunction Φ ∧Ψ, where Φ is
a QBEk,∃ formula and Ψ is a QBEk,∀ formula, is complete for DP

k .

3. Outliers

Next, we shall formally define the notion of outlier in the context of default logic and extended disjunctive logic
programming. Also, we shall introduce a number of significant decision problems (which we shall call queries) asso-
ciated with singling outliers out.

3.1. Outliers in Default Logic

We start by defining the concept of outlier in default logic. To motivate the definition and clarify it, we present
several examples.
Example 3.1 Consider the following default theory which represents the knowledge that birds normally fly, but pen-
guins normally do not fly. Moreover, we know that penguins are birds. Also, we have observed that Tweety is a bird,
Pini is a penguin, and Tweety does not fly.

D =

{
Bird(x) : Fly(x)

Fly(x)
,
P enguin(x) : ¬Fly(x)

¬Fly(x)
,

}
W = {Bird(Tweety), P enguin(Pini),¬Fly(Tweety)} ∪ {Penguin(X)→ Bird(X)}
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This default theory has two extensions. One extension is the logical closure of W∪ {Bird(Pini), ¬Fly(Pini)} and
the other is the logical closure of W∪ {Bird(Pini), Fly(Pini)}. As ¬Fly(Tweety) ∈W , both extensions include
this literal. But Tweety’s not flying is quite strange. Indeed, it is known that birds normally fly, Tweety is a bird and
there is no apparent justification for the fact that Tweety does not fly (other than ¬Fly(Tweety) belonging to W ).
Were Tweety a penguin, Tweety’s not flying would be promptly explained. But, as the theory stands, Tweety’s not
flying is inexplicable. Moreover, if we try to nail down what makes all that exceptional, we may notice that if we
had dropped the observation ¬Fly(Tweety) from W , the exact opposite would have been concluded, namely, that
Tweety does fly. But if both ¬Fly(Tweety) and Bird(Tweety) are dropped from W , it can be no longer concluded
that Tweety flies. Hence, Fly(Tweety) can be looked at as a “consequence” of the fact that Tweety is a bird. Thus
Bird(Tweety) is the observation to be considered exceptional and ¬Fly(Tweety) determines this exceptionality. A
set of literals like {Bird(Tweety)} will be called an outlier, whereas a set of literals like {¬Fly(Tweety)} will be
called its witness set in the following.

In sum, we can define an outlier as an observation characterized by some exceptional semantical property. In
the logic, this observation will be denoted by a set of literals. Such sets of literals are going to denote anomalous
characteristics of elements of the world that our knowledge base encodes (e.g., a bird named Tweety in the example
above). Therefore, in what follows, though we may sometime talk informally about outliers as individuals, it should
be clear that, formally, outliers are observations as encoded by sets of literals.

We can now give a formal definition of outlier. We make use of the following notation: given a set W and a list of
sets S1, . . . , Sn, WS1,...,Sn denotes the set W \ (S1 ∪ S2 ∪ . . . ∪ Sn).
Definition 3.2 (Outliers and Outlier Witness Set in Default Logic) Let ∆ = (D,W ) be a propositional default
theory and let L ⊆W be a set of literals 2 . If there exists a non-empty set of literals S ⊆WL such that:

(i) (D,WS) |= ¬S, and
(ii) (D,WS,L) 6|= ¬S

then we say that L is an outlier set in ∆ and S is an outlier witness set for L in ∆. If there is no L′ ⊂ L and S′ ⊆WL′

such that L′ is an outlier with witness set S′ in ∆, then we say that L is a minimal outlier set.
According to this definition, in the default theory of Example 3.1 we can conclude that {Bird(Tweety)} denotes an
outlier set and {¬Fly(Tweety)} is its witness.
Remark 3.3
(i) We point out that we regard outlier detection as a kind of data mining technique. Therefore, we mine from explicitly
observed facts and, accordingly, outliers (as well as witnesses) are defined as sets of literals that are explicitly included
in the set of observations W .
(ii) In some situations it may be useful for the analyst to be allowed to provide a specific set which outliers and
witnesses should be mined from. This is certainly a sensible and interesting idea from an application viewpoint.
However, if we use a different definition of outliers according to this idea, it will make no difference in the conceptual
and theoretical development we are going to present in the following.

Next, we shall illustrate our definition by several further examples.
Example 3.4 A well-known center for rare diseases is located in the small city of Lamezia in Calabria. One hot day in
summer you are walking along the nice streets of Lamezia when you notice a young man wearing a heavy coat going
in the same direction. In this situation, if you are a student in a school of medicine interested in genetic diseases, you
might want to ask that man about his rare illness. Another way to put it is to say that the fact that the man is wearing
a coat in a hot summer day makes him an outlier, and one of the probable explanations at that time and place for such
behavior is that this man has a rare genetic disease. A default theory ∆ that describes this episode might be as follows:

D =

{
Day(x) ∧Warm(x) ∧ Person(y) : ¬WearCoat(y, x)

¬WearCoat(y, x)

}
W = {Day(Tuesday),Warm(Tuesday), P erson(Jim),WearCoat(Jim, Tuesday)}

This theory claims that normally a person would not wear a coat on a warm day. The observations are that Tuesday
is a day and Tuesday is warm and Jim is a person who is wearing a coat on Tuesday. This system would preferably

2 Note that in a preliminary version of this work [4], an outlier was defined as a single literal. In this work, we generalize that definition since, as
we will show in the sequel, in some scenarios the original definition might be too restrictive.
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conclude that Jim is the argument of an outlier. Indeed, the reader can verify that the following facts are true:
(i) (D,W{WearCoat(Jim,Tuesday)}) |= ¬WearCoat(Jim, Tuesday)

(ii) (D,W{WearCoat(Jim,Tuesday)},{Person(Jim)}) 6|= ¬WearCoat(Jim, Tuesday).
(iii) (D,W{WearCoat(Jim,Tuesday)},{Day(Tuesday)}) 6|= ¬WearCoat(Jim, Tuesday).
(iv) (D,W{WearCoat(Jim,Tuesday)},{Warm(Tuesday)}) 6|= ¬WearCoat(Jim, Tuesday).

Hence, {Person(Jim)}, {Day(Tuesday)} and {Warm(Tuesday)} are all the minimal outliers found in our theory
and {WearCoat(Jim, Tuesday)} is the unique outlier witness set for each of them. 2

Outlier witnesses have been defined as sets because, in general, a single literal may not suffice to form a witness for a
given outlier. We illustrate this in the following example.
Example 3.5 Consider the default theory ∆ = (D,W ), where the set of default rules D conveys the following
information about weather and traffic:

(i) SummerWeekend∧Traffic Jam:Accident∨Tornado
Accident∨Tornado – that is, normally, if there is a traffic jam during a summer

weekend then an accident has occurred or a tornado hit the freeway.
(ii) Accident:Police∧Ambulance

Police∧Ambulance – that is, normally, if an accident occurred then the police and ambulances are around.
(iii) Tornado:Police∧Ambulance

Police∧Ambulance – that is, normally, if a tornado hits the freeway then the police and ambulances are
around.

Suppose also that W = {SummerWeekend, Traffic Jam, ¬Police, ¬Ambulance}. Then, the set S = {Police,
Ambulance} is an outlier witness for the outlierL = {SummerWeekend} (and for the outlierL′ = {Traffic Jam}
as well). Note that there is no singleton witness for this outlier. 2

Example 3.6 Consider the following default theory ∆:

D =

{
PlantOwner(x) :MakesMoney(x)

MakesMoney(x)
,
GoodWilling(x) :WantsReducedPollution(x)

WantsReducedPollution(x)
,

P lantOwner(x) ∧GoodWilling(x) : Donates(x)

Donates(x)

}
, and

W = {PlantOwner(Johnny), GoodWilling(Johnny),¬MakesMoney(Johnny),

Donates(Johnny),¬WantsReducedPollution(Johnny)}.

This theory claims that normally plant owners make money and that good-willed plant owners are interested in reduced
pollution and in donations. The observations are that Johnny is a good-willed plant owner who does not make money
and is not interested in reduced pollution, but anyway makes donations. Therefore it would be interesting to have a KR
system that could automatically conclude that Johnny is the argument of two outliers. Indeed, the reader can verify
that the following facts are true:

(i) (D,W{¬MakesMoney(Johnny)}) |=MakesMoney(Johnny),
(ii) (D,W{¬WantsReducedPollution(Johnny)}) |=WantsReducedPollution(Johnny),

(iii) (D,W{¬MakesMoney(Johnny)},{PlantOwner(Johnny)}) 6|=MakesMoney(Johnny), and
(iv) (D,W{¬WantsReducedPollution(Johnny)},{GoodWilling(Johnny)}) 6|=WantsReducedPollution(Johnny).

Hence, both {¬MakesMoney(Johnny)} and {¬WantsReducedPollution(Johnny)} are outlier witnesses, while
{PlantOwner(Johnny)} and {GoodWilling(Johnny)} are the corresponding outliers. 2

Finally, the following example demonstrates why it is sensible to define an outlier as a set, and not as a single literal.
Example 3.7 Consider a set of default rules D conveying the following information about watering the grass:

(i) SprinklerOn:WetGrass
WetGrass – normally, if the sprinkler is on, the grass is wet.

(ii) Rain:WetGrass
WetGrass – normally, when it is raining the grass is wet.

(iii) SprinklerOn:¬WinterT ime
¬WinterT ime – the sprinkler does not normally operate during the winter.

(iv) ¬WinterT ime:¬ChimneySmoke
¬ChimneySmoke – normally, there is no smoke in the chimney when it is not winter time (since

the fireplace is not used).
Now, suppose outliers have to be defined to be single literals. Then, for the observationW1 = {Rain,¬WetGrass}

we would have that {Rain} is an outlier with witness set {¬WetGrass}. Similarly, for the observations W2 =
{SprinklerOn,¬WetGrass}, we would have that {SprinklerOn} is an outlier with witness set {¬WetGrass}.
However, for the observation W3 = {SprinklerOn,Rain,¬WetGrass} no outliers can be singled out. This is
because:
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(i) (D,W{¬WetGrass}) |=WetGrass, but
(ii) (D,W{¬WetGrass,Rain}) |=WetGrass and also (D,W{¬WetGrass,SprinklerOn}) |=WetGrass.

However, if both Rain and SprinklerOn are dropped from W , it is no longer possible to infer WetGrass and, as
such, {Rain,WetGrass} is an outlier according to our definition with witness set {¬WetGrass}.

For another example, suppose we have the set D as above, and W4 = {SprinklerOn, ChimneySmoke}. Then
{SprinklerOn} is an outlier, with the witness {ChimneySmoke}. If the observations are W5 = {¬WinterT ime,
ChimneySmoke}, then {¬WinterT ime} is an outlier, with the witness {ChimneySmoke}. However, for the
observations W6 = {¬WinterT ime, SprinklerOn, ChimneySmoke} we will not get any outliers if outlier would
have been defined as a single literal while {¬WinterT ime, SprinklerOn} is an outlier according to our definition
with outlier witness {ChimneySmoke}.

Thus, definition that restricts the outlier to be a single literal may be too restrictive. 2

3.2. Outlier Detection in Extended Disjunctive Logic Programs

We now define the concept of outlier in the context of EDLP. Within this reasoning framework, we assume that the
general knowledge about the world is encoded as an extended (disjunctive) logic program D, called the rule program,
and that the factual evidence about some aspects of the current status of the world is encoded in a set of literals W ,
called the observations set.

Thus, a rule-observations program P is a pair P = (D,W ) consisting of a rules program and an observations
set. Intuitively, a rule-observations program relates the general knowledge encoded in D with the evidence about the
world encoded in W .

In the following we denote by P = (D,W ) the EDLP D ∪W . Also, given two disjoint subsets L and S of W , we
denote by PS the logic programD∪(W \S) and by PS,L the logic programD∪(W \(S∪L)). In the context of EDLP
knowledge bases, the definition of outlier is analogous to that given in the framework of default logic (Definition 3.2).
Definition 3.8 (Outliers and Outlier Witness Set in Extended Logic Programs) Let a rule-observations program
P = (D,W ) and a set of literals L ⊆W be given. If there exists a non-empty set of literals S ⊆WL such that:

(i) PS |= ¬S, and
(ii) PS,L 6|= ¬S

then we say that L is an outlier set and S is an outlier witness set for L in P .
All the motivating examples given in Section 3.1 for the default logic framework, except Example 3.5, can be trans-
lated to EDLP. For instance, the default theory given in Example 3.1 can be translated to an EDLP as follows: Let
P = (D,W ), where W = {Bird(Tweety),¬Fly(Tweety)} ∪ {Bird(X)← Penguin(X)} and D is the set

{ Fly(X)← Bird(X), not ¬Fly(X),

¬Fly(X)← Penguin(X), not F ly(X) }.

Analogous to what we showed in Section 3.1, if we are trying to understand what makes Tweety an exception, we
notice that if we drop the observation ¬Fly(Tweety), we would conclude the exact opposite, namely, that Tweety
does fly. Thus, {¬Fly(Tweety)} is a witness according to Definition 3.8. Furthermore, if we drop both the obser-
vations ¬Fly(Tweety) and Bird(Tweety), we are no longer able to conclude that Tweety flies. This implies that
Fly(Tweety) is a consequence of the fact that Tweety is a bird, and thus Bird(Tweety) is an outlier.

In the next example, we use disjunctive information represented in an EDLP which is not head-cycle-free [11]. We
are interested in a full-fledged EDLP for two main reasons. First, as noted by [11], head-cycle-free EDLPs can be
faithfully translated into disjunction-free logic programs. Second, disjunction-free programs are equivalent to a subset
of default logic and their expressive power is strictly less than that of general disjunctive programs [18].

The following example is adapted from [15]. We assume a situation where goods from a set G are produced by
companies in a set C owned by a set of stock holders H . Each good is produced by at most two companies and each
company may produce several goods. Suppose that currently H produces all goods in G by means of its companies,
and this represents a business advantage over its competitors. Hence, the owners’ policy prescribes that for a company
c ∈ C to be safely sold, H should not loose its capability of producing all goods. Therefore, the owners consider not
safely sellable any company that belongs to all minimal sets of companies producing all goods. The situation is further
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complicated by the presence of a control relationship amongst companies: a company cmight be controlled by a triplet
of companies c1, c2, c3. If this is the case, then c is considered safely sellable only if at least one among its controlling
companies c1, c2, c3 is safely sellable as well. Call strategic a company that cannot be safely sold according to the
owners’ policy. The owners need to know which companies can be safely sold. The situation can be formalized in an
EDLP as follows. There are literals of the form prod(g, c1, c2), one for each good g, to denote that good g is produced
by companies c1 and c2. We will use the literal prod(g, c, c) to denote that good g is produced by only one company c.
There are literals of the form contr(c, c1, c2, c3) to denote that c is controlled by c1, c2, c3. Rules in P are as follows:
– a company is not strategic if it is consistent to assume so

¬strategic(X)← not strategic(X)

– at least one of the companies producing a good is strategic

strategic(Y ) | strategic(Z)← prod(X,Y, Z)

– a company controlled by three strategic companies is strategic as well

strategic(W )← contr(W,X, Y, Z), strategic(X), strategic(Y ), strategic(Z)

– normally strategic companies are not sellable

unsell(X)← strategic(X), not ¬unsell(X)

We recall that to establish whether a company c is indeed strategic in the above setting is a ΠP
2 -complete problem [15]

and, as such, cannot be expressed by means of any disjunction-free logic program (this is because disjunction-free
logic programs can express only problems that are at most as complex as co-NP). Now assume that the following
literals have been observed

W = { prod(g1, c1, c2), prod(g2, c1, c3), prod(g3, c2, c3), prod(g4, c2, c4), prod(g5, c3, c4), prod(g6, c1, c4),
prod(g7, c2, c5), contr(c5, c1, c2, c3), contr(c5, c1, c2, c4), contr(c5, c2, c3, c4),¬unsell(c5) }.

Then, it is evident that there is an outlier among the observations. Indeed, according to our formal definition, we have
that {¬unsell(c5)} is an outlier witness with outlier {contr(c5, c1, c2, c3)}.

3.3. Some More Extensive Examples

In this section we describe in detail some further and more extensive application examples of the proposed frame-
work.

3.3.1. Learning and Knowledge Base Integrity
Assume a database of examples is given – both positive and negative examples. We want to acquire knowledge

that abstracts the examples. A way to go is to learn rules encoding the knowledge. Clear enough, the more expressive
the rule language employed for the learning purposes is, the richer the description of the example database properties
as learnt in this process will be. In this context, techniques to induce defaults from examples can be applied, which
guarantee the capability of encoding defeasible ΣP

2 properties of the database (whereas, for instance, learning Horn
rules would result in the possibility of encoding “certain” polynomial time properties). For instance, the techniques
of [20,42] can be applied here. Once the set of default rules has been learned, outlier detection techniques might be
applied for checking abnormality occurring in the knowledge base.

Next we show an example of such application using the framework for learning default theories proposed in [20].
First, we recall the definition of a learned default theory provided there. 3

Definition 3.9 (Learning a Default Theory) [20] Given a set of positive examples E+ = {e1, e2, . . . , en} of the
predicate p (that is, p(e) is assumed to be true for all e ∈ E+), a set of negative examples E− = {e′1, e′2, . . . , e′m}
(that is, ¬p(e) is assumed be true for all e ∈ E−) and an initial consistent set of first order formulas W containing no
occurrence of p, learning a default theory consists of finding a set D of defaults such that

3 A slightly different definition was also provided by the same authors in [42].
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(D,W ) |=

( ∧
e∈E+

p(e)

)
∧

( ∧
e∈E−

¬p(e)

)
.

Informally speaking, 4 default rules learnt by the method reported in [20] have the following form:

ϕ(X) : p(X) ∧ ¬ψ(X)

p(X)

(
ϕ(X) : ¬p(X) ∧ ¬ψ(X)

¬p(X)
, resp.

)
where the formula ϕ(X) generalizes some positive (negative, resp.) examples, and the formula ψ(X) generalizes all
the exceptions to ϕ(X), that are the negative (positive, resp.) examples which are generalized by ϕ(X).

Consider the following set of first-order formulas W :

pen(1), pen(2), bird(3), bird(4), bird(5),mam(6),mam(7),mam(8),mam(9), bat(10), superpen(11)

pen(X)→ bird(X)

superpen(X)→ pen(X)

bat(X)→ mam(X)

where pen stands for penguin and mam stands for mammal. Assume the following set of positive and negative exam-
ples concerning the predicate flies are given:

E+ = {3, 4, 5, 10, 11} ≡ {flies(3), f lies(4), f lies(5), f lies(10), f lies(11)}
E− = {1, 2, 6, 7, 8, 9} ≡ {¬flies(1),¬flies(2),¬flies(6),¬flies(7),¬flies(8),¬flies(9)}

Using the technique of [20] we will learn the following set of defaults D:

δ1 =
bird(X) : flies(X) ∧ ¬pen(X)

flies(X)
, δ2 =

pen(X) : ¬flies(X) ∧ ¬superpen(X)

¬flies(X)
,

δ3 =
superpen(X) : flies(X)

flies(X)
, δ4 =

bat(X) : flies(X)

flies(X)
, δ5 =

mam(X) : ¬flies(X) ∧ ¬bat(X)

¬flies(X)

Let ∆ be (D,W ) where D and W are as defined above. Assume that the set of facts W ins = {bird(12), ¬flies(12)}
is added to the theory ∆ so that the theory ∆ins = (D,W ∪W ins) is obtained. Then, in the theory ∆ins the set L =
{bird(12)} is an outlier with witness S = {¬flies(12)}. Indeed, ∆′ = (D,W ∪W ins

S ) is such that ∆′ |= flies(12)

by means of the default rule bird(X):flies(X)∧¬pen(X)
flies(X) , and ∆′′ = (D,W ∪W ins

S,L) is such that ∆′′ 6|= flies(12), since
bird(12) is no longer entailed by ∆′′.

An outlier may indicate that something is functioning wrong and that some actions are to be taken. In the example
at hand, the individual 12 could be unhealthy and thus requires to be cured. If it is believed that the outlier must be
“removed” from the knowledge base, then this can be basically accomplished using two different procedures, that
we describe next in the context of the example at hand. According to the first procedure, it is acknowledged that the
bird 12 is a penguin and, hence, the literal pen(12) is added to the theory ∆ins. According to the second procedure,
it is recognized that 12 cannot fly since one of its wings is broken. Consequently, the fact sick(12) is added to the
set W , 12 is added to the set of negative examples, and a novel set of defaults Drev (taking into account this kind of
exception) will be learned. In particular, the set Drev will differ from the set D since the default rules δ1 and δ2 will
be replaced by the two following ones:

δrev1 =
bird(X) : flies(X) ∧ ¬pen(X) ∧ ¬sick(X)

flies(X)
, and

δrev2 =
pen(X) ∨ sick(X) : ¬flies(X) ∧ ¬superpen(X)

¬flies(X)
.

4 The reader is referred to [20] for more details.
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It is interesting to stress the relationships between outliers and learned default theories. Let ∆ = (D,W ) be a learned
theory, and assume some set of facts W ′ is added to it. Assume that {¬p(c)} ⊆ W ′ is an outlier witness set for an
outlier L ⊆ (W ∪ W ′). Then, it is the case that (D,W ∪ W ′

{¬p(c)}) |= p(c), that is, that c behaves as a positive
example, while we have stated the exact opposite, that is, we have ¬p(c) as a negative example provided with the
update set W ′. A similar reasoning can be followed in case where the witness set is {p(c)}.

3.3.2. A Biological Rule Database
For several reasons, the realm of biology is quite interesting for applying outlier detection techniques . First of all,

rules in biology often have exceptions. Second, the domain is not completely known. Third, knowledge base and data
base tools in bioinformatics applications are critically needed [44].

With the aid of a biologist, we formalized the following knowledge base about the “central dogma” of molecular
biology, that is, the process according to which DNA sequences are translated into proteins. The knowledge base
∆bio = (Dbio,W bio) is as follows:

Rule1 : DNA(S):¬transRNA(S)
¬transRNA(S)

Normally a generic DNA sequence is not transcribed to RNA.

Rule2 : DNA(S)∧prom(S):transRNA(S)
transRNA(S)

Normally a DNA sequence having a promotor is transcribed to RNA.

Rule3 : transRNA(S)∧RBS(S):transProtein(S)
transProtein(S)

Normally a transcribed DNA sequence that has a Ribosomal Binding Site
is translated into a protein.

Rule4 : transProtein(S):¬deg(S)¬deg(S)
Normally a translated protein is not degradated.

Rule5 : DNA(S):¬prom(S)
¬prom(S)

Normally a DNA sequence doesn’t have a promotor.

Rule6 : transRNA(S):¬RBS(S)
¬RBS(S)

Normally a transcriptable RNA sequence has not a Ribosomal Binding
Site.

Rule7 : recDeg(S):foundSubseq(S)
foundSubseq(S)

Normally, if a protein degradated just recently, some broken subsequences
are found in the wet lab experimental sample.

Rule8 : transProtein(S)∧¬deg(S):foundProtein(S)
foundProtein(S)

Normally when a sequence is translated into a protein and the protein is
not degradated, the protein is found in the experimental sample.

Rule9 : :¬foundProtein(S)
¬foundProtein(S)

Normally proteins are not found in experimental samples.

Rule10 : old(S):¬foundSubseq(S)¬foundSubseq(S)
Normally if a degradated protein is an old one no subsequences are found.

Rule11 : prom(S) ∧ rep(S)→ ¬transRNA(S)
It is known that if a repressor binds the promotor region of a DNA se-
quence, then the sequence is not transcribed.

Rule12 : ¬prom(S)→ ¬transRNA(S)
It is known that if no promoter region is in a DNA sequence, it is not
transcribed.

Rule13 : deg(S)→ recDeg(S) ∨ old(S)
It is known that degradated proteins are those which are either degradated
recently or very old ones.

Rule14 : foundSubseq(S)→ deg(S)
It is known that if some broken subsequences are found in the experimen-
tal sample the protein is degradated.

Assume, now, that the results of two different wet lab experiments are encoded in the two following sets of literals:

W exp
1 = {DNA(seqA), prom(seqA), RBS(seqA),¬foundProtein(seqA)}, and

W exp
2 = {DNA(seqB), prom(seqB), rep(seqB), RBS(seqB), foundSubseq(seqB), foundProtein(seqB)}.

Then in the theory (Dbio,W bio∪W exp
1 ) the sets {DNA(seqA)}, {prom(seqA)}, and {RBS(seqA)} are all outliers

with witness {¬foundProtein(seqA)}. Indeed, these sets include all the indications that protein should be found.
Therefore, it might be concluded that a repressor binds the promotor region of the DNA sequence or the protein is
degradated.

Also in the theory (Dbio,W bio ∪W exp
2 ) there are outliers. In particular, L = {rep(seqB), foundSubseq(seqB)}

is a minimal outlier having witness S = {foundProtein(seqB)}. In fact, it is surprising that the protein is found
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whereas a repressor is present and some broken subsequences are found in the lab sample.

4. Complexity Results

In this section we study the computational complexity underlying outlier detection problems. Formal proofs of the
results we present are reported in Appendix A (for results of Section 4.2 concerning default theories) and Appendix
B (for results of Section 4.3 concerning extended (disjunctive) logic programs). Below we provide all the theorems
together with an informal outline of the proofs. To start with, we define the outlier detection problems we are going
to analyze.

4.1. Outlier Detection Queries and Result Summary

In order to analyze the computational complexity underlying outlier detection we refer to some decision problems,
called queries, which are defined next. These queries refer to a given knowledge baseKB, whereKB is either a default
theory ∆ = (D,W ) or an EDLP rule-observations program P = (D,W ):
– OUTLIER: Given KB, does there exist at least one outlier set in KB ?
– OUTLIER[k]: Let k be a constant positive integer. GivenKB, does there exist at least one outlier set with cardinality

of at most k in KB ?
– OUTLIER(L): Given KB and a set of literals L ⊆W , is L an outlier in KB ?
– OUTLIER(S): Given KB and a set of literals S ⊆W , is S a witness for some outlier set L in KB ?
– OUTLIER[k](S): Let k be a constant positive integer. Given KB and a set of literals S ⊆W , is S a witness for any

outlier set L of cardinality of at most k in KB ?
– OUTLIER(S)(L): Given KB, a set of literals S ⊆ W , and a set of literals L ⊆ W , is L an outlier with witness S in
KB ?

Furthermore, we are interested in the complexity of some of the above-defined problems when only minimal outliers
are to be singled out. Thus, we also consider the following two additional queries:
– OUTLIER-MIN(L): Given KB and a set of literals L ⊆ W , is L a minimal outlier in KB (that is, there is no other

outlier L′ in KB such that L′ ⊆ L)?
– OUTLIER-MIN(S)(L): Given KB, a set of literals S ⊆ W , and a set of literals L ⊆ W , is L a minimal outlier and

is S a witness set for L in KB ?
Note that the complexity of a query asking for the existence of a minimal outlier set is obviously the same as that of
query OUTLIER, since an outlier exists in a given theory if and only if a minimal one is there as well.

Complexity results are summarized in Table 1 and explained below. It is clear from Table 1 that answering outlier
detection problems on propositional normal general (disjunction-free, resp.) default theories turns out to be as hard as
answering them on propositional disjunctive (non-disjunctive, resp.) extended logic programs.

4.2. Complexity of outlier detection using Reiter’s Default Logic

In this subsection we analyze the complexity associated with detecting outliers in general and and in DF proposi-
tional default logic. We preliminarily notice that all the membership results have been established for general theories
and general disjunction-free theories, while hardness results have been established for a strict subset of them, that is,
normal theories. Hence, complexity results hold overall for both normal default theories and general default theories.

We start our analysis with the query OUTLIER, the most general of the set. Given a default theory, this query asks
whether there exists an outlier in the theory.
Theorem 4.1 On propositional default theories, OUTLIER is ΣP

3 -complete for general default theories, and ΣP
2 -

complete for DF theories.
Proof Outline. It follows from Definition 3.2 that the C-membership of the query OUTLIER given on a propositional
default theory ∆ = (D,W ), where C denotes a suitable complexity class, can be proved by building a nondetermin-
istic Turing machine T that simultaneously guesses two disjoint subsets L and S = {s1, . . . , sn} of W , and then
verifies that
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Theory Normal Default Normal DF Default

Query EDLP ELP

OUTLIER ΣP
3 -complete ΣP

2 -complete

OUTLIER[k] ΣP
3 -complete ΣP

2 -complete

OUTLIER(L) ΣP
3 -complete ΣP

2 -complete

OUTLIER(S) DP
2 -complete DP-complete

OUTLIER[k](S) DP
2 -complete DP-complete

OUTLIER(S)(L) DP
2 -complete DP-complete

OUTLIER-MIN(L) DP
3 -complete DP

2 -complete

OUTLIER-MIN(S)(L) ΠP
3 -complete ΠP

2 -complete
Table 1
Complexity results for outlier detection

– (D,WS) |= ¬s1 ∧ . . . ∧ ¬sn (entailment problem q′), and
– (D,WS,L) 6|= ¬s1 ∧ . . . ∧ ¬sn (entailment problem q′′).
Let Ce be the complexity class of the entailment problem for ∆. Then the problem q′ is in the class Ce, while the
problem q′′ is in the class co-Ce. Thus, T can employ a Ce oracle to solve both q′ and q′′. Hence, the query OUTLIER is
in the class C = NP Ce . Recall that the entailment problem is in ΠP2 = co-ΣP2 for general propositional default theories
[55,27], and is in co-NP for DF propositional default theories [33]. As a consequence, query OUTLIER belongs to the
classes NPΣP

2 = ΣP3 and NPNP = ΣP2 for general propositional default theories and for DF propositional default
theories, respectively.

Completeness is proved by reducing the ΣPk -complete (k ∈ {2, 3}) problem of deciding the validity of a QBEk,∃
formula to OUTLIER. The reader is referred to the Appendix for the detailed proof. �
Let us now turn to analyzing the second query. Given a theory and a positive integer number k, the query OUTLIER[k]
asks for the existence of an outlier of size at most k in the theory. The complexity of this query is stated below.
Theorem 4.2 On propositional default theories, OUTLIER[k] is ΣP

3 -complete for general theories, and ΣP
2 -complete

for propositional DF default theories.
Proof Outline. Bounding the size of the outlier does not change the complexity of singling it out. Indeed, as for the
membership, both a witness set S and an outlier set L such that |L| ≤ k can be guessed, and the rest of the proof
follows the same line of reasoning outlined above for Theorem 4.1. As for hardness, the construction referred to in
Theorem 4.1 still holds as well, since the outlier set L we employ in the proof has size 1 and, hence, complies with
any possible value of k. �

Next, we focus on query OUTLIER(L). It turns out that knowing the outlier set L in advance does not reduce the
complexity w.r.t. the general OUTLIER query since, in particular, the number of possible outlier witness sets S ⊆WL

for L is still exponential. This is summarized in the following theorem.
Theorem 4.3 On propositional default theories, OUTLIER(L) is ΣP

3 -complete for general theories, and ΣP
2 -complete

for DF theories.
Proof Outline. The same as for Theorem 4.1. �

Given a default theory and a set of literals S, query OUTLIER(S) asks whether S is a witness set for any outlier
in the theory. It turns out that the complexity of OUTLIER(S) is lower than the complexity of OUTLIER. This is so
because, once the candidate outlier witness set S is given, there is no need to check all the potential outlier witnesses
(and there is an exponential number of potential witnesses). The result is given in the following theorem.
Theorem 4.4 On propositional default theories, OUTLIER(S) is DP

2 -complete for general theories and DP-complete
for DF theories.
Proof Outline. In order to prove membership we refer, again, to the entailment problems q′ and q′′ introduced in the
proof outline of Theorem 4.1, but this time the outlier witness set S is fixed in advance. We recall that for general
propositional default theories, q′ is in ΠP2 , while for DF propositional default theories, it is in co-NP. As for problem
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q′′, it is in ΣP2 and in NP for general theories and for DF theories, respectively, provided that L is known (these are
standard entailment problems for general and DF default theories). However, it is possible to show that q′′ belongs
to those classes also when L is unknown. Indeed, q′′ can be answered by showing that there exists a set L in WS

and an extension E of the theory (D,WS,L) such that ¬S 6∈ E. Thus, a nondeterministic polynomial time Turing
machine TM can be built that guesses simultaneously the set L ⊆WS , the subset DE ⊆ D of generating defaults of
an extension E of (D,WS,L), and an ordering of the rules in DE . Then, TM proceeds as follows:
– for general propositional default theories, TM uses an NP oracle (a) to check the conditions that DE must satisfy

to be a set of generating defaults for E, and (b) to verify that ¬s1 ∧ . . . ∧ ¬sn 6∈ E. These steps can be performed
by executing a polynomially bounded number of calls to the NP oracle;

– for DF default theories, TM (a) checks the conditions that DE must satisfy to be a set of generating defaults for an
extension E of a disjunction-free theory, and (b) verifies that ¬s1 ∧ . . . ∧ ¬sn 6∈ E, by checking that for every i,
1 ≤ i ≤ n, ¬si is not the conclusion of any default in DE . These steps can be performed in polynomial time.

Thus, for general default theories, OUTLIER(S) is the conjunction of two independent problems belonging to ΠP2 and
ΣP2 and, therefore, it is in DP

2 . For DF default theories, OUTLIER(S) is the conjunction of two independent problems,
one from co-NP, the other from NP and, hence, OUTLIER(S) is in DP .

As for hardness, we consider the following decision problem, which we call problem q. Given two independent
default theories ∆1 and ∆2, and two letters s1 and s2, the problem q is to verify whether the following is true:

(∆1 |= s1) ∧ (∆2 6|= s2) (problem q).

For general propositional default theories, q is a DP
2 -complete problem, since testing whether ∆1 |= s1 is ΠP2 -

complete, while the problem of testing ∆2 6|= s2 is ΣP2 -complete [27,55]. For DF propositional default theories, q is a
DP -complete problem, since testing ∆1 |= s1 is co-NP-complete, while testing ∆2 6|= s2 is NP-complete [33]. Then,
hardness of query OUTLIER(S) is proven by reducing q to query OUTLIER(S). Given an instance of q, a default theory
∆(q) = (D(q),W (q)) is associated with q such that ¬s1, s2 ∈W (q), and q is true iff {¬s1} is an outlier witness set
for {s2} in ∆(q). �

The following result shows that, similarly to what was shown for query OUTLIER, bounding the size of the outlier
set to be associated with the provided witness set S in advance does not change the complexity figures.
Theorem 4.5 On propositional default theories, OUTLIER[k](S) is DP

2 -complete for general theories, and DP-
complete for DF theories.
Proof Outline. Both membership and hardness can be proved as discussed above for Theorem 4.4. To prove member-
ship it suffices to guess only outlier sets with size of at most k. As for hardness, the reduction proceeds as described
in the proof outline of Theorem 4.4, since outlier witness sets employed in the construction are singleton sets. �

Next, we analyze the query OUTLIER(S)(L). Note that this query is important because it might be the basic operator
in a system for outlier detection using propositional default theories. We recall that, given a default theory and two
sets of literals S and L, this query “simply” asks if S is an outlier witness set for the outlier L in that theory.
Theorem 4.6 On propositional default theories, OUTLIER(S)(L) is DP

2 -complete for general theories, and DP-
complete for DF theories.
Proof Outline. Complexity of query OUTLIER(S)(L) is the same as that of query OUTLIER(S). Similarly to what
happens for query OUTLIER(L) with respect to query OUTLIER, knowing the outlier set L in advance does not reduce
the complexity of OUTLIER(S)(L) with respect to query OUTLIER(S). Indeed, recall that even if setsL and S are fixed,
it is nonetheless needed to solve entailment problems q′ and q′′ defined in the proof outline of Theorem 4.1, which are,
respectively, ΠP

2 -complete (co-NP-complete, resp.) and ΣP
2 -complete (NP-complete, resp.) for propositional general

(DF, resp.) default theories. Hence, the result. �
Given a default theory and a set of literals L, the query OUTLIER-MIN(L) asks whether L is a minimal outlier set in

the theory. Although the outlier set is given as input to this query, OUTLIER-MIN(L) turns out to be the most complex
of the outlier detection problems considered in this work, even more complex than the general OUTLIER query.
Theorem 4.7 OUTLIER-MIN(L) on propositional default theories is DP

3 -complete for general theories, and DP
2 -

complete for DF theories.
Proof Outline The membership part of the theorem can be proved as follows. First, consider the problem of verifying
that L is indeed an outlier, that is, that there exists a witness set S ⊆WL for L. It has been shown in Theorem 4.3 that
OUTLIER(L) is ΣP

3 -complete for general default theories and ΣP
2 -complete for DF theories. Once verified that L is an

outlier it must be further shown that L is a minimal outlier, i.e., that for each nonempty subset L′ of L and for each
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subset S′ of WL′ , L′ and S′ together do not satisfy Definition 3.2. The negation of the latter problem can be solved
by a polynomial time nondeterministic Turing machine with an oracle for the entailment problem that guesses the two
subsets L′ and S′ and then verifies if they indeed satisfy Definition 3.2. As a consequence, the problem is in ΠP

3 for
general default theories and in ΠP

2 for DF theories.
It can be concluded that the overall query OUTLIER-MIN(L) on general (resp. DF) theories is the conjunction of

two independent problems, one from ΣP
3 (resp. ΣP2 ) and one from ΠP

3 (resp. ΠP
2 ) and, thus it lies in DP

3 (resp. DP
2 ).

Hardness of query OUTLIER-MIN(L) for general theories is proved by reducing the problem of deciding the validity
of a formula

F = ((∃X)(∀Y )(∃Z)f(X,Y, Z)) ∧ ((∀W )(∃U)(∀V )g(W,U, V ))

to the problem OUTLIER-MIN(L). Within F , f(X,Y, Z) is a Boolean formula in conjunctive normal form and
g(X,Y, Z) is a Boolean formula in disjunctive normal form. Formula F is the conjunction of a QBE3,∃ and a
QBE3,∀ and, hence, this reduction establishes the completeness of OUTLIER-MIN(L) on general theories for the
class DP

3 . A similar reduction, but exploiting a conjunction of a QBE2,∃ formula and a QBE2,∀ formula, is used to
prove the hardness of OUTLIER-MIN(L) for DF default theories. �

Let us now consider the query OUTLIER-MIN(S)(L). Recall that given a default theory and two disjoint sets S and
L, this query asks if L is a minimal outlier set having S as a witness set in the theory. Note that this query is at least as
complex as query OUTLIER(S)(L) that checks whether L and S represent a pair of outlier (not necessarily a minimal
one) and a witness. The precise complexity is stated next.
Theorem 4.8 OUTLIER-MIN(S)(L) on propositional default theories is ΠP

3 -complete for general theories, and ΠP
2 -

complete for DF theories.
Proof Outline. Let us first consider membership. In order to answer the query OUTLIER-MIN(S)(L) it must be verified
that (a) S and L satisfy Definition 3.2, i.e., (D,WS) |= ¬S and (D,WS,L) 6|= ¬S, and (b) for each subset L′ of L,
and S′ ofWL′ , S′ and L′ do not satisfy Definition 3.2, i.e. (D,WS′) 6|= ¬S′ or (D,WS′,L′) |= ¬S′. The former query
coincides with OUTLIER(S)(L), and hence it is in DP

2 (resp. DP) for general (resp. DF) theories. Vice versa, the query
at (b) is in ΠP

3 (resp. ΠP
2 ) for general (resp. DF) theories, since its negation can be answered by a nondeterministic

polynomial time Turing machine that guesses a pair of disjoint subsets L′ ⊆ L and S′ ⊆ WL′ and then checks that
they form an outlier and witness pair by using an oracle in ΣP

2 . Thus, the overall problem is in ΠP
3 (resp. ΠP

2 ).
As for hardness, in the case of general (resp., DF) theories, it is proved by reducing the problem of deciding the

validity of a QBE3,∀ (resp., QBE2,∀) formula to query OUTLIER-MIN(S)(L). �

4.3. Complexity Results for Extended (Disjunctive) Logic Programs

This section discusses the complexity of detecting outliers when ELPs (Section 4.3.1) and EDLPs (Section 4.3.2)
are considered.

4.3.1. Complexity of Outlier Detection in Extended Logic Programs
Extended logic programs, for which disjunction is not allowed, correspond to a subset of default theories. The

correspondence between the two languages is as follows [26]. For each ELP rule r:

L0 ← L1, . . . , Lm, not Lm+1, . . . , not Ln

let δ(r) denote the following default rule:

L1 ∧ . . . ∧ Lm : ¬Lm+1, . . . ,¬Ln
L0

,

where the justification of δ(r) is the identically true literal true if r has no negation as failure literals (i.e., if n = m).
Then, with every ELP P , we can associate a default theory ∆P = ({δ(r) | r ∈ P}, ∅) such that the following holds
[26]:

(i) If M is an answer set of P , then the deductive closure of M is an extension of ∆P , and
(ii) every extension of ∆P is the deductive closure of exactly one answer set of P .

In the sequel, given an ELP rule-observations program P = (D,W ), ∆(P ) will denote the associated default theory
({δ(r) | r ∈ D},W ). Note that ∆(P ) is disjunction-free. Similarly, given a disjunction-free default theory ∆ =
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(D,W ) such that for each δ ∈ D, the consequent of δ is a literal and there is no conjunction in the justification of δ,
P (∆) will denote the associated rule-observations program ({r | δ(r) ∈ D},W ).

In order to state following complexity results, a technical Lemma is needed.
Lemma 4.9 Let P = (D,W ) be an ELP rule-observations program and let ∆(P ) be its associated DF default
theory. Then L is an outlier set in P with witness set S iff L is an outlier set in ∆(P ) with witness set S.
Proof: By the relationship holding between the answer sets of the ELP P and the extensions of the default theory
∆P stated in [26] (and recalled above), it follows that given an ELP rule-observations program P = (D,W ), for
each subset Z of W the answer sets of PZ are in one-to-one correspondence with the extensions of (D′,WZ) where
(D′,W ) = ∆(P ). 2

All that given, the complexity results for general ELPs can be summarized in the following theorem.
Theorem 4.10 The complexities of outlier detection problems over ELP are as follows:
– OUTLIER, OUTLIER[k], and OUTLIER(L) are ΣP2 -complete;
– OUTLIER-MIN is DP

2 -complete and OUTLIER-MIN(S)(L) is ΠP2 -complete, and
– OUTLIER(S), OUTLIER[k](S), and OUTLIER(S)(L) are DP -complete.
Proof: (Membership) Given an ELP rule-observations program P = (D,W ), by construction, ∆(P ) is a disjunction-
free default theory whose size is polynomially-bounded in the size of P . Thus, the claim follows from Lemma 4.9 and
the membership parts of Theorems 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, and 4.8.

(Hardness) Given a normal DF default theory ∆ = (D,W ) such that for each δ ∈ D, δ has the form L1∧...∧Lm:L0

L0
,

P (∆) is an ELP rule-observations program whose size is, by construction, polynomially bounded in the size of ∆.
Hence, hardness follows from Lemma 4.9 and the hardness parts of Theorems 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, and 4.8
concerning DF default theories. Indeed, we recall that all the hardness parts of these theorems make use of a normal
DF default theory such that the conclusion, and hence the justification, of each default rule occurring in it consists in
a single literal. 2

4.3.2. Complexity of Outlier Detection in Disjunctive Extended Logic Programs
We have analyzed the complexity of outlier detection problems for extended logic programs by exploiting results

obtained for default theories. However, the more general class of extended disjunctive logic programs cannot be
mapped to the language of default theories. Therefore, we are not able to directly exploit the complexity results
proved for default logics in order to derive correspondent results for EDLPs. Nevertheless, it turns out that outlier
detection problems on EDLPs are precisely just as hard as the corresponding tasks evaluated on default logics, as
summarized in the following theorem.
Theorem 4.11 For general EDLPs, queries (1) OUTLIER, (2) OUTLIER[k], and (3) OUTLIER(L) are ΣP

3 -complete,
queries (4) OUTLIER(S), (5) OUTLIER[k](S), and (6) OUTLIER(S)(L) are DP

2 -complete, query (7) OUTLIER-MIN(L)
is DP

3 -complete, and query (8) OUTLIER-MIN(S)(L) is ΠP
3 -complete.

Proof Outline. (1) Membership in ΣP
3 follows since, given a rule-observation pair P = (D,W ), the query can be

answered by a polynomial-time nondeterministic Turing machine that guesses the outlier set L and the witness set W
and then employs a ΣP

2 oracle to decide PS |= ¬S (a ΠP
2 problem) and PS,L 6|= ¬S (a ΣP

2 problem).
ΣP

3 -hardness is proved by reducing the problem of the validity of a QBE3,∃ formula to query OUTLIER. The reduc-
tion associates a negation-free EDLP rule-observation pair P (Φ) = (D(Φ),W (Φ)) with a QBE3,∃ formula Φ =
∃X∀Y ∃Zf(X,Y, Z) in conjunctive normal form. The properties of P (Φ) are analogous to the properties of the de-
fault theory ∆(Φ) which were described when discussing query OUTLIER on default theories (see Theorem 4.1).
However, differently from Theorem 4.1, a saturation technique is employed to guarantee those properties.

(2) and (3) The proof uses the same ideas illustrated for query OUTLIER.
(4) Membership in DP

2 can be proved by taking into account that the problem corresponds to the conjunction of two
independent problems, namely, deciding whether PS |= ¬S and whether PS,L 6|= ¬S. While the former problem is
in ΠP

2 , it can be shown that the latter is in ΣP
2 even though L is not provided as input to the problem. Indeed, one can

proceed by guessing together the outlier set L and a (minimal) model M of PS,L such that ¬S⊆/M and then checking
that it is indeed minimal by exploiting an NP oracle.
DP

2 -hardness is proved by reducing to query OUTLIER(S) the problem of deciding whether a program P ′ is consistent
(a ΣP

2 check) and a program P ′′ is inconsistent (a ΠP
2 check).

(5) and (6) The results can be proved using the same line of reasoning as illustrated above for query OUTLIER(S).
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(7) Membership is analogous to that of Theorem 4.7. As for the hardness, the line of reasoning is analogous to that
of the hardness part of Point 1 of Theorem 4.7, but, from a technical point of view, the construction used in Point 1 of
Theorem 4.11, where a ΣP3 -complete problem is taken into account, is employed. Loosely speaking, two sets of rules,
r′ and r′′, representing two distinct copies of the program used in the reduction shown in Point 1 of this Theorem, are
used in order to build a logic rule-observations program P (F ) such that that the conjunction F = Φ∧Ψ of a QBE3,∃
formula Φ (encoded via rules r′) and of a QBE3,∀ formula Ψ (encoded via rules r′′) is valid if and only if a suitable
set L is a minimal outlier set in P (F ).

(8) Both membership and hardness are analogous to that of Theorem 4.8 and the hardness exploits rules r′′ used in
Point 7 of this proof. �

5. The First-Order Case

We now discuss the extension of our framework to the first-order case, where variables are allowed to occur in
defaults. We will use a formal framework which is similar in several aspects to the one set down by Cadoli et al. [15].

A finite first-order default theory ∆ = (D,W ) consists of a finite set W of first-order formulas and of a finite set
D of default rules of the form (1), with the prerequisite, justifications, and consequence being first-order formulas
with free variables among those in X = X1, . . . , Xn. A default is closed if none of α, β1, . . ., βn, and γ contains free
variables. A default theory is closed if all the formulas in W and in D are closed. A default or default theory which is
not closed is called open.

It is assumed that the Herbrand Universe U of a finite default theory is nonempty and finite (hence, no function
symbols are allowed to occur in the theory). In the following we will consider only finite first-order default theories.

The semantics of a closed first-order default theory is based on the notion of extension, whose definition is analo-
gous to the definition of extension provided in Section 2.1 in the context of a propositional default theory [15]. The
definition of extension is applied to open default theories by assuming that the defaults with free variables implicitly
stand for the set of closed defaults obtained by replacing those free variables with terms of the Herbrand Universe U
of the default theory.

Let φ(X) be a formula whose free variables are among X = X1, . . . , Xn, and let ζ = ζ1, . . . , ζn be a list of objects
from U . Then, we denote by φ[X/ζ] the result of simultaneously substituting ζi for Xi in φ, for all i = 1, . . . , n.
Let ∆ = (D,W ) be a first-order default theory. We denote by INST(W ) the instantiation of W , which is the set of
closed formulas

{φ[X/ζ] | φ(X) ∈W, ζ ∈ Un}.

Similarly, we denote by INST(D) the instantiation of D, which is the set of closed defaults{
α[X/ζ] : β1[X/ζ], . . . , βm[X/ζ]

γ[X/ζ]
| α(X) : β1(X), . . . , βm(X)

γ(X)
∈ D, ζ ∈ Un

}
,

and serves the purpose of eliminating free variables from the formulas.
The instantiation INST(∆) of ∆ is (INST(D), INST(W )). For example, consider a group of friends who have to

decide whether to go together to watch a movie or not, given that some of them do not like going to the movies. This
is encoded in the theory ∆ex = (D,W ), where

D =

{
(∃X)(¬likes(X,Y )) : ¬watch(Y )

¬watch(Y )

}
, and

W = {likes(mary,movie),¬likes(jennie,movie), watch(movie)}.

Then U = {mary, jennie,movie}, and the instantiation INST(∆ex) of ∆ex is such that INST(W ) = W and
INST(D) is{

(∃X)(¬likes(X,mary)) : ¬watch(mary)
¬watch(mary)

,
(∃X)(¬likes(X, jennie)) : ¬watch(jennie)

¬watch(jennie)
,

(∃X)(¬likes(X,movie)) : ¬watch(movie)
¬watch(movie)

}
.
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Now we are in a position to extend the definition of outlier in the context of first-order default theories.
Definition 5.1 (First-Order Outliers and Outlier Witness Set) Let ∆ = (D,W ) be a first-order default theory and
let L ⊆W be a set of ground literals. If there exists a non-empty set of ground literals S ⊆WL such that:

(i) (INST(D), INST(W )S) |= ¬S, and
(ii) (INST(D), INST(W )S,L) 6|= ¬S

then we say that L is an outlier set in ∆ and S is an outlier witness set for L in ∆.
For example, consider the theory ∆ex above. Then L = {¬likes(jennie,movie)} is an outlier with the witness

S = {watch(movie)}.
Given a finite default theory ∆, the instantiation of ∆ contains only closed formulas but it is not in general a ground

theory, due to the possible presence of quantifiers. A finite propositional default theory can be anyway associated with
∆ as follows.

Let F = ∀Xφ(X) (F = ∃Xφ(X), resp.) be a universally (existentially, resp.) quantified formula. Then, the
propositional version PROP(F ) of F (under Domain Closure) is the formula

∧
ζ∈U φ(ζ) (

∨
ζ∈U φ(ζ), resp.). The

propositional version PROP(φ) of a quantifier-free formula φ is the formula φ itself. Let φ be a formula, then propo-
sitional version PROP(φ) of φ is obtained by recursively substituting each subformula ψ of φ with its propositional
version PROP(ψ).

Let ∆ = (D,W ) be a first-order default theory. We denote by PROP(W ) the propositional version of W , which
is the set of propositional formulas

{PROP(φ) | φ ∈ INST(W )}.

Similarly, we denote by INST(D) the propositional version of D, which is the set of propositional defaults{
PROP(α) : PROP(β1), . . . ,PROP(βm)

PROP(γ)
| α : β1, . . . , βm

γ
∈ INST(D)

}
.

The propositional version PROP(∆) of ∆ is the propositional default theory (PROP(D),PROP(W )). Since it has
been assumed that the Herbrand Universe U of the theory ∆ is finite, the propositional default theory PROP(∆)
is finite. For example, consider the theory ∆ex above. The propositional version PROP(∆ex) of ∆ex is such that
PROP(W ) =W and PROP(D) is{

¬likes(mary,movie) ∨ ¬likes(jennie,movie) ∨ ¬likes(movie,movie) : ¬watch(movie)
¬watch(movie)

,

¬likes(mary,mary) ∨ ¬likes(jennie,mary) ∨ ¬likes(movie,mary) : ¬watch(mary)
¬watch(mary)

,

¬likes(mary, jennie) ∨ ¬likes(john, jennie) ∨ ¬likes(movie, jennie) : ¬watch(jennie)
¬watch(jennie)

}
.

Let ∆ = (D,W ) be a first-order default theory, and let S,L ⊆ W two disjoint subsets of ground literals. Then,
by construction of PROP(∆), if L is an outlier with witness S in ∆ then L in an outlier with witness S in the
propositional default theory PROP(∆). The converse holds provided that outliers and witnesses are constrained to
be subsets of W ∩ PROP(W ). 5 We have already remarked that constraining outliers and witnesses to be singled
out from a given subset of set of literals in W does not change the complexity figures. Thus, if PROP(∆) is a finite
propositional default theory, complexity results of Section 4.2 can be directly applied to the case in which the input
theory is PROP(∆). Thus, the complexity analysis presented in Section 4.2 allows us to characterize the difficulty of
the mining problem at hand once the propositional version of the first-order theory is available.

For example, consider the theory ∆ex = (D,W ). Since PROP(W ) = W , the outliers in the propositional theory
PROP(∆ex) are in one-to-one correspondence with the outliers in the first-order theory ∆ex.

As a matter of fact, it must be recalled that the theory PROP(∆) can be exponentially larger than ∆. And, indeed,
it can be seen that, due to the exponential increase of the size of the theory, the complexity of deciding the existence
of an outlier in a first-order theory is in NEXPTIMEΣP

2 , which is the exponential analogue for ΣP
3 = NPΣP

2 .

5 From a technical point of view, the transformation PROP(∆) can be modified so that both directions hold immediately. To this aim it suffices
to replace open (and, in the case there is a single constant in U , also non-ground) literals ` in W with formulas of the form f ∨ ¬f → `.
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Furthermore, as we have already pointed out, our approach is to regard outlier detection as a data mining technique,
and therefore we mine from explicitly observed facts belonging to W . These facts can be very naturally regarded as
tuples of a database from which we are interested in singling out anomalies. In the database scenario, a rather pertinent
issue is to characterize the data complexity [58], i.e., the complexity of query evaluation when the database is assumed
to vary, whereas the query expression is assumed to be fixed. Next, we are going to address this issue in the context
of outlier detection in default theories scenario.

Let ∆ = (D,W ) be a first-order default theory. We denote by W fact the extensional component of ∆, that is the
subset of W consisting in all the ground literals in W . The extensional component can be assimilated to a relational
database. The first-order component of ∆ is, conversely, the set W rule =W \W fact.
Definition 5.2 (Data Complexity of Outlier Detection Queries) The data complexity of an outlier query Q, where
Q is one of the queries defined in Section 4.1, when the knowledge base is a first-order default theory ∆ = (D,W rule∪
W fact), is the complexity of deciding Q measured in the size of the extensional component W fact of ∆.
In other words, the data complexity of Q is the complexity of answering Q on a first-order default theory, under the
assumption that the set of default rules and the first-order component are held fixed and the only component allowed
to vary is the extensional one.

Next we show that under data complexity measure, the query OUTLIER is ΣP
3 -complete, that is, it has the same

complexity as that of its propositional counterpart.
Theorem 5.3 The data complexity of OUTLIER is ΣP

3 -complete.
Proof Outline. Consider membership. Given a first-order default theory ∆ = (D,W rule ∪ W fact), let k be the
maximum number of variables occurring in a default rule in D or in a formula in W rule, and let n be the number
of distinct elements in the Herbrand Universe U of ∆. The number n is at most linear in the size of the extensional
component W fact of ∆, that is n = O(|W fact|). Hence, assuming that D and W rule are not part of the input, the size
of the theory PROP(∆) is O(nk), hence polynomial in the size of W fact which is the input of the OUTLIER query.
In order to complete the proof, it is sufficient to recall that the query OUTLIER for finite general propositional default
theories is in ΣP

3 , as shown in the membership part of Theorem 4.1, Point 1.
As for hardness, it can be shown (see the appendix for details) that there exists a fixed set of default rules DFO and

a fixed set of non atomic formulas WFO, together with a mapping which given as input a QBE3,∃ formula Φ outputs
a set W (Φ) of ground atoms, such that the theory PROP((∆FO,WFO ∪W (Φ))) is equivalent to the propositional
theory ∆(Φ) described in the hardness part of Theorem 4.1, Point 1. The rest of the proof then follows from the above
mentioned theorem. Details of the reduction are reported in the Appendix. �
The construction described in the proof of Theorem 5.3 can be used to adapt the other reductions depicted in the
hardness part of theorems concerning general propositional default theories in order to obtain reductions valid under
the data complexity measure. Therefore, we obtain:
Theorem 5.4 The data complexity of (i) OUTLIER is ΣP3 -complete; (ii) OUTLIER[k] and OUTLIER(L) is ΣP3 -
complete; (iii) OUTLIER(S), OUTLIER[k](S), and OUTLIER(S)(L) is DP

2 -complete; (iv) OUTLIER-MIN(L) is DP
3 -

complete, and (v) OUTLIER-MIN(S)(L) is ΠP
3 -complete.

By construction, both Theorems 5.3 and 5.4 hold for finite normal first-order default theories.

6. Related Work

Research related to the work presented in this paper can be divided into three groups: (i) abduction, (ii) outlier
detection from data, and (iii) outlier detection using logic programming under stable model semantics.

6.1. Abduction

The research on logic-based abduction [47,16,23,53,22,19,32,52,39] is related to outlier detection. Generally speak-
ing, in the framework of logic-based abduction, the domain knowledge is described using a logical theory T . A subset
X of hypotheses is an abduction explanation to a set of manifestations M if T ∪X is a consistent theory that entails
M .

The work by Eiter, Gottlob, and Leone on abduction from default theories [24] is very relevant to the work presented
here. In that paper, the authors present a basic model of abduction from default logic and analyze the complexity of
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some associated abductive reasoning tasks. They also present two modes of abduction: one based on brave reasoning
and the other on cautious reasoning. According to [24], a default abduction problem (DAP) is a tuple 〈H,M,W,D〉
where H is a set of ground literals called hypotheses, M is a set of ground literals called observations, and (D,W ) is
a default theory. The goal is to explain observations from M by using hypotheses in the context of the default theory
(D,W ). The authors propose the following definition for an explanation:
Definition 6.1 ([24]) Let P = 〈H,M,D,W 〉 be a DAP and let E ⊆ H . Then, E is a skeptical explanation for P iff

(i) (D,W ∪E) |=M , and
(ii) (D,W ∪E) has a consistent extension.

The relationship between outlier detection on normal propositional default theories and skeptical explanations is
summarized by the following theorem.
Theorem 6.2 Let ∆ = (D,W ) be a normal default theory, where W is consistent. Also, let L ⊆ W and S ⊆ W
be two disjoint sets. Then S is an outlier witness set for L in ∆ if and only if L is a minimal nonempty skeptical
explanation for ¬S in the DAP P = 〈L,¬S,D,WS,L〉.
Proof:

(i) (”Only If” ) Let ∆ = (D,W ) be a normal default theory, L ⊆ W , and S ⊆ W an outlier witness set for L.
By our definition of outlier, it must be the case that (D,WS) |= ¬S, or in other words, (D,WS,L ∪ L) |= ¬S.
Moreover, since (D,W ) is a normal default theory, so is (D,WS,L ∪ L). In addition, since W is consistent, so
is WS . Hence, (D,WS) has a consistent extension. Therefore, by Definition 6.1, L is a skeptical explanation
for ¬S in the DAP P .

(ii) (”If” ) Suppose L is a minimal nonempty skeptical explanation for ¬S in the DAP P = 〈L,¬S,D,WS,L〉. By
definition, we have:

(a) (D,WS) |= ¬S, and
(b) (D,WS) has a consistent extension.

Moreover, since L is a minimal nonempty explanation, at least one of the following must be true:
(a) (D,WS,L) 6|= ¬S, or
(b) (D,WS,L) does not have a consistent extension.

Since ∆ = (D,W ) is a normal default theory and W is a consistent theory, it must be the case that ∆ =
(D,WS,L) is also a normal default theory and WS,L is consistent. Hence, the default theory (D,WS,L) has a
consistent extension. Therefore it must be the case that (D,WS,L) 6|= ¬S, and it can be concluded that S is an
outlier witness set for L in (D,W ).

2

In sum, it follows that some sort of duality does hold in the context of normal default theories between abduction
and outlier detection problems. Nonetheless, in outlier detection problems, the outlier witness set S (which according
to Theorem 6.2 is the analog to the set of observations in abduction problems) has to be guessed, while the set of
observations in abduction is given in the input. We have shown in Section 4 that the high complexity of the outlier
detection problems arises from the fact that the set S is not given in advance. Hence, the fact that the witness set S is
not given in input is quite significant from the computational complexity point of view and prevents us from borrowing
complexity results from abduction problems.
Remark 6.3 Theorem 6.2 is valid also for ordered semi-normal default theories. This is because the second condition
in Definition 6.1 requires a default theory which has at least one consistent extension, and ordered semi-normal default
theories are guaranteed to have this property (see [25]). For other subclasses of default theories, however, Theorem
6.2 might not hold. Consider for example the following default theory ∆ = (D,W ), where D = { l:¬s¬s , ¬s:¬q∧p

p ,
¬s:¬p∧l

l , ¬s:¬l∧q
q } and W = {l, s}. This default theory is semi-normal but not ordered. The reader can verify that {l}

is an outlier set and {s} is its witness set. However, since (D,W{s}) does not have a consistent extension, we cannot
say that {l} is a minimal nonempty skeptical explanation for ¬{s} in the DAP P = 〈{l},¬{s}, D,W{s},{l}〉.

Research on logic-based abduction from disjunctive logic programs [22,53] is also related to outlier detection, and
has comprehensibly been studied in the context of logic programming (see [19] for a survey). This issue has been
explored in two directions. The first line of work has used logic programs as an AI tool for knowledge representation
and reasoning about abduction, while the second approach has used the concept of abduction for defining the semantics
of logic programs. In the context of disjunctive logic programming, research has focused on the relationship between
semantics of DLP and abduction-based semantics of logic programs (see, for example, [53]).
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Eiter et al. [22] have studied abduction in the context of normal and disjunctive logic programs that have only one
type of negation, namely, negation by failure, but have not considered extended logic programs where both classical
negation and negation by failure are allowed. In addition, unlike our framework, the model of Eiter et al. does not
allow for an explicit exploitation of integrity constraints. Their abduction schema assumes that the inference operator
is provided as an input. Eiter et al. define a logic programming abduction problem as follows:
Definition 6.4 ([22]) Let V be a set of propositional atoms. A logic programming abduction problem (LPAP) P over
V consists of a tuple 〈H,M,LP, |=〉, where H ⊆ V is a finite set of hypotheses, M ⊆ V ∪ {¬v | v ∈ V } is a finite
set of manifestations, LP is a propositional logic program on V and |= is an inference operator.

They define a solution to an LPAP as:
Definition 6.5 ([22]) Let P=〈H,M,LP, |=〉 be an LPAP, and let S ⊆ H . Then S is a solution (or explanation) to P
iff LP ∪ S |=M .
According to [22], abductive conclusions should not lead to inconsistency. Hence, they use a variant of skeptical
inference in which some answer set must exist. We cannot establish a formal relationship between outlier detection
and abduction on disjunctive logic programs because the definition of outliers requires the ability to prove negative
literals in the classical negation sense, while in the semantics used in [22], one can never prove negative literals since
the program itself does not use any negative literal.

Sakama and Inoue have defined abduction in the context of EDLPs, and suggested a program transformation be-
tween “abductive programs” and disjunctive programs [53]. However, their techniques and complexity results do not
apply to the case of outlier detection since they have investigated credulous reasoning rather than skeptical reasoning,
and since in their framework an observation is constrained to be a single literal.

However, if we use the framework of Eiter et al. as described in Definitions 6.4 and 6.5, and adapt it to a “skeptical”
version of the work of Sakama and Inoue, we can show the following.
Theorem 6.6 Let P = (D,W ) be a rule-observations program and let L, S ⊆W . Then the following holds:

(i) If S is an outlier witness set forL inP , thenL is an explanation in the LPAPA = 〈W,¬S, P ′ = (D,WS,L), |=〉,
where |= is entailment from EDLPs as defined in Section 2.2, and

(ii) If L is a minimal explanation in the LPAP A = 〈W,¬S, P ′ = (D,WS,L), |=〉, where |= is entailment from
EDLPs as defined in Section 2.2, then S is an outlier witness set for L in P .

Proof:
(i) Let P = (D,W ) be a rule-observations program and let L, S ⊆ W . Assume S is an outlier witness set for L

in P . By definition of outlier, it must be the case that (D,WS,L ∪ L) |= ¬S. Then, by Definition 6.5, L is an
explanation for ¬S in the LPAP A.

(ii) Suppose L is a minimal explanation for ¬S in the LPAP A = 〈W,¬S, P ′ = (D,W{S,L}), |=〉. By Definition
6.5, it is known that:

(D,WS,L ∪ L) |= ¬S

Therefore (D,WS) |= ¬S. Moreover, since L is a minimal explanation, the following must be true:

(D,WS,L) 6|= ¬S

Hence, it can be concluded that S is an outlier witness set for L in (D,W ).
2

As with default logic, there is a clear difference between those two frameworks. The construction given in the
proof of Theorem 6.2 and 6.6 does not provide a technique to solve outlier detection problems using abduction, since
for outlier detection both the outlier L and its outlier witness set S have to be singled out, while in abduction both
hypotheses and observations are fixed sets. In fact, outlier detection is a knowledge discovery technique: the task in
outlier detection is to learn the exceptional observations along with the information witnessing for it.

6.2. Outlier detection from data

The vast body of literature concerning outlier detection in databases largely exploits techniques borrowed from
statistics, machine learning and other fields [9,28,57]. In almost all cases, the techniques deal with data organized as
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a single relational table. Often only numerical attributes are handled and a metrics relating pairs of rows in the table
are first required. These approaches can be classified as supervised-learning methods, where each example must be
labeled as exceptional or not [37,51], and unsupervised-learning methods, where such labels are not required. The
latter approach is obviously more general. As the technique proposed in our work is unsupervised, the sequel of this
section will focus on unsupervised techniques. These techniques can be categorized into various groups.

Statistical-based methods, which assume that the given data set has a distribution model. Outliers, then, are those
objects that satisfy a discordancy test, that is, that are significantly larger (or smaller) w.r.t. the values they are supposed
to assume according to the hypothesized distribution [9].

Deviation-based techniques identify outliers by inspecting the typical characteristics of objects and defines them as
objects that deviate from those features [8,54].

A rather different technique, which finds outliers by observing low dimensional projections of the search space, is
presented in [1]. In that paper, a point is considered an outlier if it is located in some low density subspace.

Yu et al.[17] introduced a method based on wavelet transform, that identifies outliers by removing clusters from the
original data set. Wavelet transform has also been used in [56] to detect outliers in stochastic processes.

A further group of methods use density-based techniques [14] and exploit a notion of locality that measures the
plausibility for an object to be an outlier with respect to the density of the local neighborhood. To reduce the compu-
tational load, Jin et al. [30] proposed a method to determine only the top-n local outliers.

Distance-based outlier detection was introduced by Knorr and Ng [34,35] to overcome the limitations of statistical
methods. A distance-based outlier is defined as follows: A point p in a data set is an outlier with respect to parameters
k and R if at least k points in the data set lie at a distance greater than R from p. This definition generalizes the
definition of outlier in statistics and is appropriate when the data set does not fit any standard distribution. Ramaswamy
et al.[48] modified the above definition of outlier. They do not provide any ranking for outliers that are singled out.
The definition they suggest is based on the distance of the k-th nearest neighbor of a point p, denoted by Dk(p), and
proceeds as follows: Given k and n, a point p is an outlier if no more than n − 1 other points q in the data set have
a higher value for Dk(q) than p. This means that the points q having the n greatest Dk(q) values are singled out as
outliers.

A definition of outlier that considers for each point the sum of the distances from its k nearest neighbors is proposed
in [6,7,2]. The authors present an algorithm that uses the Hilbert space-filling curve which exhibits scaling results close
to linear. Similarly, a near-linear time algorithm for detection of distance-based outliers exploiting randomization is
described in [10].

The general differences and analogies between the approaches described above and the one suggested in the present
work are significant. In fact, those approaches deal with “knowledge,” as encoded within one single relational table.
In contrast, our technique deals with complex knowledge bases, which though comprising relational-like information,
generally also include semantically richer forms of knowledge, such as axioms, default rules and so forth. Hence, in
the framework analyzed in this paper, complex relations relating objects of the underlying theory can be expressed.
As a consequence, even if the intuitive and general sense of computing outliers in the two contexts is analogous, the
conceptual and technical developments are quite different as well as the formal properties of the computed outliers.

Sometimes domain knowledge can help to single out outliers that would otherwise be difficult to identify via
methods like the ones surveyed above. The following example is intended to provide some intuition about this. The
example also serves to highlight the different types of knowledge that can be mined using our approach as opposed to
these others. For this purpose, we make a comparison between our approach and a typical distance-based approach.
To facilitate the comparison, we will use an example where literals included in the evidential knowledge denote facts
concerning integer numbers.
Example 6.7 Let I = {0, 1, 2, . . . , 99, 100}. Consider a binary predicate p(x, y), which normally is used to represent
pairs (x, y) ∈ I2 such that (a) x+ y = 100 and (b) x 6= y, and assume the following set of observations is available:

DB = {p(0, 100), p(1, 99), p(2, 98), . . . , p(49, 51), p(50, 50), p(51, 49), . . . , p(98, 2), p(99, 1), p(100, 0)}.

According to the knowledge informally stated above, the literal p(50, 50) is associated with an anomaly in DB, since
the pair of integers x = 50 and y = 50 satisfies condition (a) but not condition (b).

Now, suppose one wants to single out anomalous observations inDB. In that case, in the absence of domain knowl-
edge, an unsupervised data mining technique could be used to mine outliers in DB. For example, the distance-based
outlier definition given in [34] would be suitable for this purpose. Assume that the Euclidean distance is employed
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and that parameters k and R are set to k = 3 and R =
√
2 (which is the distance separating each point (x, y) of

DB from its nearest neighbor (x′, y′) in DB). According to these parameters, there are two outliers in DB, namely,
(0, 100) and (100, 0). These two points are precisely the two extremes of the distribution associated with points in
DB.

Notice that, according to the distance-based definition, point (50, 50) is the worst candidate to represent an outlier
in DB, since it is, in fact, the centermost point of DB. And indeed, for each combination of values for the parameter
k and R, it holds that the point (50, 50) is a distance-based outlier in DB if and only if all the points in DB are
distance-based outliers. A similar situation would characterize the other methods surveyed above in this subsection.

Assume, conversely, that the domain knowledge informally stated above is available as encoded in a default theory
∆ = (D,W ) such that

W =DB ∪ {s(x, y, x+ y) | x, y ∈ I} ∪ {e(x, x) | x ∈ I}, and

D=

{
¬s(x, y, 100) ∨ e(x, y) : ¬p(x, y)

¬p(x, y)
| x, y ∈ I

}
∪
{
: ¬s(x, y, z)
¬s(x, y, z)

| x, y, z ∈ I
}
,

where the ternary predicate s(x, y, z) represents the sum (s(x, y, z) is in W if z = x + y) and the binary predicate
e(x, y) represents the equality (e(x, y) is in W if x = y). By exploiting Definition 3.2, the abnormality perceived in
the knowledge encoded by theory ∆ can be singled out. Indeed
(D,W{p(50,50)}) |= ¬p(50, 50), and
(D,W{p(50,50)},{e(50,50)}) 6|= ¬p(50, 50),

and the set S = {p(50, 50)} is an outlier witness set for the outlier setL = {e(50, 50)}. Loosely speaking, {e(50, 50)}
being an outlier can be interpreted as the number 50 behaving abnormally, while {p(50, 50)} being a witness can be
interpreted as the explanation of its abnormality, that is that the point (50, 50) does not satisfy both conditions (a) and
(b) but is, nonetheless, included in the set of observations DB concerning the predicate p. 2

Before concluding, we want to emphasize that the framework developed in this paper relies heavily on the concept
of default rules. The default rules describe what is normally expected, and hence can be exploited for detecting
observations which are not normal according to the default theory at hand. Such default rules are not given in advance
in the frameworks discussed in this section. Furthermore, along with outliers, we single out their “witnesses” – those
unexpected properties that characterize outliers. As far as we know, no such justifications for outliers are provided by
the approaches described above.

6.3. Outlier Detection using Stable Model Semantics

We have originally presented outlier detection in the context of default logics [4]. Outlier detection was successively
studied in the context of non-disjunctive logic programs under stable model semantics in [5]. Next, we recall the notion
of stable model and the definition of outlier provided in [5].

A propositional logic program (LP, for short) is a collection of classical-negation-free non-disjunctive propositional
rules. Clearly, from a syntactic viewpoint, LPs form a subset of ELPs (precisely those consisting of all classical-
negation-free ELPs).

The stable model semantics of a LP P assigns to P the set of its stable models SM(P ), that corresponds to the set
of the answer sets of P .

Let S be a set of propositional letters. Then, program P entails S (resp. ¬S), denoted by P |= S (resp. P |= ¬S),
if for each model M ∈ SM(P ) and for each letter L in S, L ∈M (resp. L 6∈M ).

So, loosely speaking, logic programs rely on the closed world assumption (CWA for short), which states that
everything which is not explicitly inferred is false. Extended logic programs, on the other hand, relay on open world
assumption (OWA for short), which states that only what can be explicitly inferred is true, while all the rest is unknown.

In the following, unless it is clear from the context, in order to differentiate the operator defined on logic programs
(relying on the CWA) from the operator defined on extended logic programs (relying, vice versa, on the OWA), we
will denote the former by |=cwa and the latter by |=owa.

A LP rule-observation pair P = (D,W ) is defined in [5] analogously to an ELP rule-observation pair, but D is a
logic program andW is a set of letters (positive literals). Next, the definition of outlier in the context of logic programs
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under stable model semantics is recalled.
Definition 6.8 (given in [5]) Let P = (D,W ) be a LP rule-observations program, and let L ⊆W be a set of literals.
If there exists a non-empty set of literals S ⊆WL such that:

(i) PS |=cwa ¬S, and
(ii) PS,L 6|=cwa ¬S

then we say that L is an outlier set and S is an outlier witness set for L in P .
As already noted in the introduction, in [5] a weaker assumption is adopted to define outliers. Indeed, normal logic

programs under stable model semantics do not allow classical negation, but only negation as failure. As a consequence,
in [5], the negation of the witness is not required to be explicitly inferred but, rather, that the witness is not entailed
by the logic program. This is in contrast to the view adopted in the present paper, by which the witnessing set for
an outlier is a property that is explicitly observed and opposite to that which is expected. Hence, the approach of [5]
singles out anomalies of a different nature.

These differences can be substantiated from a formal point of view by showing that Definitions 3.2 and 6.8 cannot
be reduced one to the other by means of natural program transformations, which are usually employed in order to
prove that normal logic programs are semantically equivalent to extended logic programs 6 [26]. Given an (extended)
logic program-observation pair P , we investigate two program transformations: the positive form P+ of P which,
informally speaking, is the LP representing the counterpart of P under the stable model semantics, and the two-valued
form P− of P , formally defined next, which, loosely speaking, is the ELP representing the closed-world interpretation
of P .
Definition 6.9 Let P = (D,W ) be an ELP rule-observation pair and let L be the set of the propositional letters
occurring in P . For each ` ∈ L, let `¬ denote a novel propositional letter. Let L ∈ L be a positive literal ` (resp., neg-
ative literal¬`), then byL+ we denote the propositional letter ` (resp., the propositional letter `¬). Let S be a subset of
L∪¬L. Then by S+ we denote the set {L+ | L ∈ S}. For each rule r = L1 ← L2, . . . , Lm, not Lm+1, . . . , not Ln,
let r+ denote the rule L+

1 ← L+
2 , . . . , L

+
m, not L

+
m+1, . . . , not L

+
n . The positive form P+ of P is the LP rule-

observation pair P+ = (D+,W+) such that D+ = {r+ | r ∈ D} ∪ {C ← `, `¬ | ` ∈ L} ∪ {` ← C | ` ∈
L} ∪ {`¬ ← C | ` ∈ L}, where C is a new letter. The last three sets are introduced in order to assure that whenever
a literal and its negation belong to an answer set, then the answer set is forced to include all the literals appearing in
the logic program.
By the results of [26], it holds that M is a consistent (resp., inconsistent) answer set for P if and only if M+ (M+ ∪
{C}, resp.) is a stable model for P+.

The definition of a two-valued form of an extended logic program (ELP) follows.
Definition 6.10 Let P = (D,W ) be an ELP rule-observation pair and let L be the set of the propositional letters
occurring in P . The two-valued form P− of P is the ELP rule-observation pair P− = (D−,W−) such that D− =
D ∪ {¬p← not p | p ∈ L} and W− =W .

Given an ELP (LP, resp.) rule-observation pair P , we denote by Σowa(P ) (Σcwa(P ), resp.) the set of pairs (S,L)
such that L is an outlier set in P and S is an outlier witness set for L in P according to Definition 3.2 (6.8, resp.).

We show that the following three properties hold.
– OP1: Let P be an ELP rule-observation pair, (S,L) ∈ Σowa(P ) 6⇒ (S+, L+) ∈ Σcwa(P+) and (S+, L+) ∈
Σcwa(P+) 6⇒ (S,L) ∈ Σowa(P ),

– OP2: LetP be an ELP rule-observation pair, (S,L) ∈ Σowa(P ) 6⇒ (S,L) ∈ Σowa(P−) and (S,L) ∈ Σowa(P−) 6⇒
(S,L) ∈ Σowa(P ),

– OP3: Let P be a LP rule-observation pair, (S,L) ∈ Σcwa(P )⇔ (S,L) ∈ Σowa(P−).
OP1 states that the outliers according to Definition 3.2 in a generic ELP program-observation pair P are incomparable
with the outliers according to Definition 6.8 in the positive form P+ of P ; OP2 states that the outliers according to
Definition 3.2 in a generic ELP program-observation pair P are incomparable with the outliers according to Definition
3.2 in the two-valued form P− of P ; and, finally, OP3 states that Definition 3.2 can be used to single out the outliers
in a LP rule-observation pair P according to Definition 6.8, by means of the transformation P−.

It follows from these properties that the framework for mining outliers described here is more general than that
described in [5].

OP1, OP2 and OP3 are proved next.

6 We are grateful to an anonymous referee for suggesting this line of comparison.
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Theorem 6.11 (OP1) Let P be an ELP rule-observation pair. Then (S,L) ∈ Σowa(P ) 6⇒ (S+, L+) ∈ Σcwa(P+)
and (S+, L+) ∈ Σcwa(P+) 6⇒ (S,L) ∈ Σowa(P ).

Next we prove the above statement by providing two counterexamples. Let us start with the first implication.
Consider the ELP pair P̂ = (D,W ), where D includes the only rule

¬p← not p, q.

and W is the set {p, q}. Then, P̂+ = (D+,W+) is such that D+ is

p¬ ← not p, q. C ← p, p¬. C ← q, q¬. p← C. p¬ ← C. q ← C. q¬ ← C.

and W+ is {p, q}. Consider the outlier L = {q} in P̂ with the associated witness S = {p}. It is clear that L+ and S+

do not form an outlier-witness pair in P̂+. Indeed, while P̂+
{p} |=

cwa ¬p, since p does not belong to the unique stable

model M1 = {p¬, q} of P̂+
{p}, the unique stable model M2 of the latter logic program is the empty set, and hence

P̂+
{p},{q} |=

cwa ¬p.

As for the second implication in OP1, consider the ELP pair P̃ = (D,W ), where D includes only the rule

p← not q.

and W is the set {p, q}. Then P̃+ = (D+,W+) is such that D+ is

p← not q. C ← p, p¬. C ← q, q¬. p← C. p¬ ← C. q ← C. q¬ ← C.

and W+ is {p, q}. Consider the outlier L+ = {q} in P̃+ with the associated witness S+ = {p}. It is clear that L and
S do not form an outlier-witness pair in P . Indeed, P̃{p} 6|=owa ¬p, since the unique answer set of the ELP P̃{p} is
{q}.
Theorem 6.12 (OP2) Let P be an ELP rule-observation pair. Then (S,L) ∈ Σowa(P ) 6⇒ (S,L) ∈ Σowa(P−) and
(S,L) ∈ Σowa(P−) 6⇒ (S,L) ∈ Σowa(P ).

Next we prove the above statement by providing two counterexamples. Let us start with the first implication in OP2.
Consider again the ELP pair P̂ of the preceding example, and the corresponding two-valued form P̂− = (D−,W−),
where D− is

¬p← not p, q. ¬p← not p. ¬q ← not q.

and W− is {p, q}. Consider the outlier L = {q} in P̂ with the associated witness S = {p}. Also in this case, L and S
do not form an outlier-witness pair in P̂−. Indeed, while P̂−

{p} |=
owa ¬p, the ELP P̂−

{p},{q} has the unique answer set

{¬p,¬q}, and hence P̂−
{p},{q} |=

owa ¬p.

As for the second implication in OP2, consider again the ELP pair P̃ of the preceding example, and the correspond-
ing two-valued form P̃− = (D−,W−), where D− is

p← not q. ¬p← not p. ¬q ← not q.

and W− is {p, q}. Consider the outlier L = {q} in P̃− with the associated witness S = {p}. Then L and S do not
form an outlier-witness pair in P̃ . Indeed, the unique answer set of P̃{p} is {q} and hence P̃{p} 6|=owa ¬p.

Next we provide an intuition as to why those implications cited in Theorems 6.11 and 6.13 actually fail to hold.
As for the positive form transformation (see Theorem 6.11), consider condition (ii) of Definition 3.2:

PS,L 6|=owa ¬S ≡ (∃M ∈ ANSW(PS,L))(∃s ∈ S)(¬s 6∈M).

Following results from [26] and assuming consistency, condition (ii) of Definition 6.8 can be formulated as:

P+
S+,L+ 6|=cwa ¬S+ ≡ (∃M ∈ ANSW(PS,L))(∃s ∈ S+)(s ∈M+).

Clearly, the first condition does not imply in general the second one since it might exist an answer set M such that
both ¬s and s do not occur in M . Consequently, (S,L) ∈ Σowa(P ) 6⇒ (S+, L+) ∈ Σcwa(P+). For the inverse
implication a similar line of reasoning can be followed.
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As for the two-valued form transformation (see Theorem 6.13), consider again condition (ii) of Definition 3.2.
Clearly, this condition does not exclude that there exists an answer set M such that s 6∈ M . Therefore, since in the
program P− there is the rule ¬s ← not s, it might be the case that M is associated with an answer set M− of P−

such that ¬s ∈ M−. Consequently (S,L) ∈ Σowa(P ) 6⇒ (S,L) ∈ Σowa(P−). For the inverse implication a similar
line of reasoning can be drawn.

Conversely, a faithful correspondence holds for Σcwa(P ) and Σowa(P−), as shown next.
Theorem 6.13 (OP3) Let P be a LP rule-observation pair. Then (S,L) ∈ Σcwa(P )⇔ (S,L) ∈ Σowa(P−).
Proof: It is well-known that if M is a stable model of a LP P , then

M− =M ∪ {¬` | ` ∈ (L \M)},

where L is the set of all the propositional letters occurring in P , is an answer set of P− [26]. Moreover, every answer
set of P− can be represented in the form shown above, where M is a stable model of P . Thus,

PS |=cwa ¬S ⇔ (∀M ∈ SM(PS))(s 6∈M)⇔ (∀M− ∈ ANSW(P−
S ))(¬s ∈M−)⇔ P−

S |=
owa ¬S, and

PS,L 6|=cwa ¬S ⇔ (∃M ∈ SM(PS,L))(s ∈M)⇔ (∃M− ∈ ANSW(P−
S,L))(¬s 6∈M

−)⇔ P−
S,L 6|=

owa ¬S.

This completes the proof. 2

For example, consider the logic program P = (D,W ), where D consists of the only rule

q ← m,not e.

and W is {q,m, e}. The ELP program P− = (D−,W−) is such that D− is

q ← m,not e. ¬q ← not q. ¬m← not m. ¬e← not e.

and W− is {p,m, e}. Consider the outlier L = {e} in P with the associated witness set {q} . L and P form an
outlier-witness pair also in P−. Indeed it can be verified that P−

{q} |=
owa ¬q, due to the rule ¬q ← not q, and also that

P−
{q},{e} 6|=

owa ¬q, since q belongs to the unique answer set of this program and consequently ¬q does not belong to
it.

The following example helps in further clarifying the dissimilarities between the two frameworks. Consider a rail-
road crossing scenario, and assume that the current state of the world viewed by Agent A is modeled by the proposition
red light, which represents the knowledge that the semaphore located near the railroad is red, and cross(B), repre-
senting the knowledge that Agent B is passing through the railroad track. The knowledge base of Agent A supposedly
has a rule asserting that normally the railroad should not be crossed when the light is red. Let us consider two for-
malisms for representing the knowledge base. First, assume that the knowledge of Agent A is encoded in a default the-
ory, consisting of the single default rule red light:¬cross(x)

¬cross(x) (or, equivalently, by the ELP rule under the answer set se-
mantics ¬cross(x)← not cross(x), red light). Equipped with this knowledge, Agent A might conclude that some-
thing is wrong, since {cross(B)} is a witness for the outlier {red light}, in that removing cross(B) from the current
state of the world explicitly derives the exact opposite, i.e. ¬cross(B), while removing both cross(B) and red light
does not entail ¬cross(B). To conclude it is worth pointing out that the rule ¬cross(x) ← not cross(x), red light

plays the role of program P̂ introduced in one of the counterexamples used to prove Theorem 6.11.
Second, assume that instead of being encoded in default logic, the knowledge of Agent A is encoded in a logic

program under stable model semantics. In this case, Agent A must rely on a kind of knowledge which is somewhat
different and weaker than the knowledge encoded by the default rule above. Indeed, since there is no explicit negation
in this formalism, a logic programming rule like cross(x)← not red light may be used. This rule models the some-
what hazardous decision: “if it is unknown that the semaphore light is red, then the railroad can be crossed”. According
to the work of [5], in this situation we will also conclude that red light is an outlier and cross(B) is its witness. This
is because after removing cross(B) from the current state of the world, cross(B) can no longer be explicitly inferred,
and, consequently, ¬cross(B) is entailed, while after removing both cross(B) and red light, cross(B) is explicitly
inferred, and, consequently, ¬cross(B) is not entailed. Again, it is worth noticing the connection to the theorems
proved above: in this case, the rule cross(x) ← not red light plays the role of program P̃ introduced in one of the
counterexamples used to prove Theorem 6.11.
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This example demonstrates basic differences with the formalism adopted by [5]. Indeed, in the previous example,
the default rule red light:¬cross(x)

¬cross(x) (or, equivalently, by the ELP rule under the answer set semantics ¬cross(x) ←
not cross(x), red light) captures the knowledge that normally the railroad should not be crossed when the light is
red (unless, for example, there is some state of emergency). One could claim that the rule we used under stable model
semantics does not faithfully correspond to the default, since the rule states under which conditions one should cross,
instead of saying, as done in the default, when one should not cross. The problem is that there is no natural way of
saying anything similar in the language of normal logic programs under stable model semantics because this language
has no classical negation and, by the previous theorem, classical negation cannot be faithfully simulated. To illustrate
the other way around, note that with outlier detection under stable model semantics of [5] all observations are encoded
as positive literals. Now consider one such example where we look for outliers under stable model semantics. If we
were to construct a perfectly corresponding example under default reasoning, with the same outliers and witnesses
to be exactly there, then the involved default rules should have strong negated literals as consequences according to
Definition 3.2, but such consequences cannot be directly coded under stable model semantics, since strong negation
is not allowed.

It is also worth pointing out that complexity pictures derived for the fragment of non-disjunctive logic programs
under stable model semantics cannot be exploited to derive complexity results concerning disjunctive logic programs
under answer set semantics, since the latter are more general. And, in fact, outlier detection using EDLPs is more
complex than outlier detection when disjunction-free logic programs under stable model semantics are considered.
For instance, while it has been shown in previous sections that the outlier existence problem is ΣP3 -complete in the
former case, the same problem is ΣP2 -complete in the latter case (see [5]).

7. Conclusion

Suppose you are walking down the street and you see a blind person going in the opposite direction. You believe
he is blind because he is feeling his way with a walking stick. Suddenly something falls out of his bag and to your
surprise, he finds it immediately without probing about with his fingers, as one would expect from a blind person.
This kind of behavior renders that person to be blind a suspicious situation.

In this paper we provided a formal framework for this type of commonsense reasoning. Our framework is essentially
a data mining technique as it allows for automatic discovery of outliers. The user of a system built using our outlier
detection method does not have to specify the suspicious observations or provide a list of potential outliers. Rather,
the system identifies the exceptional observations by analyzing the data and the default rules in the knowledge base at
hand. This method can be used in several applications such as diagnosis and homeland security.

We used two related logics for our formal analysis: Reiter’s default logic and extended disjunctive logic program-
ming under the answer set semantics. Reiter’s default logic was chosen because it constitutes a powerful nonmonotonic
formalism that deals with incomplete information, while logic programming was chosen for its practicality. Logic pro-
gramming as a tool of KR&R is widely employed in Artificial Intelligence, and some efficient implemented systems
are available [38,43,40].

We addressed several main issues related to this idea of outlier detection in the framework of default logics and
extended disjunctive logic programs under the answer set semantics. First, we introduced a formal definition of outliers
and justified it using several application examples. Second, we analyzed the complexities involved in incorporating
the outlier detection mechanism into knowledge bases expressed using default logic or extended logic programs. In
our view, a thorough complexity analysis is essential for singling out the more complex subtasks involved in outlier
detection. This first step is conducive to designing effective algorithms for implementation purposes. We have also
provided an extensive comparison between our formalism and other methods that exist in the literature for outlier
detection.

Our approach relies on the existence of default rules in the knowledge base. Hence methods to automatically
create defaults are of interest for the application of our technique. For instance, the techniques developed by Nicholas
and Duval [20,42], allow for learning default theories from examples. In Section 3.3 we demonstrated an example
of outlier detection in the context of learned default theories. Other techniques for learning rules deserve attention,
and coupling our method with these techniques could be an interesting topic for future research. Among these other
techniques, inductive logic programming deals with learning (variants of) logic programs in various settings[36]. For
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instance, Inoue and Kudoh [29] worked on learning extended logic programs. Learning rules can also be realized in
semi-supervised settings using an approach like metaquerying [3,13].

This work can be extended in several directions. First, the concept of outliers in other frameworks of default rea-
soning, like System Z [46], and Circumscription [41] should be studied. Second, intelligent heuristics that will enable
the heavy computational task involved in efficient outlier detection should be investigated. In this respect, the identifi-
cation of tractable subsets for the task of outlier detection might be one possible step towards making the computation
task more efficient. Third, the ideas developed here might be exploited for using default logic for specifying seman-
tically rich integrity constraints on relational databases such that any tuple that does not comply with the constraints
will be an outlier (cf. Section 3.3).

Private and public organizations are overwhelmed with vast quantities of data and knowledge. Procedures that effi-
ciently analyze the data and report only essential information are in great need. Our framework is one such knowledge
discovery procedure as it is capable of identifying abnormal properties and abnormal observations automatically. It
remains to find out how the ideas developed in this paper will work in practice. To this end, we hope to develop a
system for outlier detection and test it on real-world data.
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Appendix A. Proofs for Section 4

The following notations are used in this sequel.
Let L be a set of literals. Then we denote by L+ the set of positive literals occurring in L, and with L− the set of

negative literals occurring in L.
Let T be a truth assignment to the set x1, . . . , xn of variables. Then Lit(T ) denotes the set of literals {`1, . . . , `n},

such that `i is xi if T (xi) = true and is ¬xi if T (xi) = false, for i = 1, . . . , n.
Let T1 and T2 be two truth assignments on the disjoint setsX and Y of variables, respectively. Then T1∪T2 denotes

the truth assignment T on the set of variables X ∪Y such that T (x) = T1(x), if x ∈ X , and T (x) = T2(x), if x ∈ Y .

Proof of Theorem 4.1:
OUTLIER on propositional default theories is

1. ΣP3 -complete, for general theories, and
2. ΣP2 -complete, for DF theories.

Proof:
1. (Membership) Given a theory ∆ = (D,W ), we must show that there exist two disjoint subsets L and S =
{s1, . . . , sn} of W such that (D,WS) |= ¬s1 ∧ . . . ∧ ¬sn (problem q′) and (D,WS,l) 6|= ¬s1 ∧ . . . ∧ ¬sn
(problem q′′). Problem q′ is ΠP2 -complete, while problem q′′ is ΣP2 -complete [27,55]. Thus, a polynomial-time
nondeterministic Turing machine can be built with a ΣP2 oracle, which solves query OUTLIER as follows: the
machine guesses both the sets L and S and then solves problems q′ and q′′ by two calls to the oracle.

(Hardness) To prove the completeness of the query OUTLIER, the ΣP3 -complete problem of deciding the
validity of a QBE3,∃ formula is reduced to it. A QBE3,∃ formula Φ has the form

∃X∀Y ∃Zf(X,Y, Z)

where X,Y, Z are disjoint sets of variables, and f(X,Y, Z) is a propositional formula on X,Y, Z. Intuitively,
the reduction associates the default theory ∆(Φ) = (D(Φ),W (Φ)) with the formula Φ so that:
– there exists one and only one literal l in W (Φ) that may belong to an outlier set, but not to any witness set;
– there exists a bijection between each of the possible outlier witness sets S from W (Φ) and all the potential

truth assignments of the variables in the set X;
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– ∆S(Φ) = (D(Φ),W (Φ)S) encodes Φ so that ∆S(Φ) |= ¬S iff ∀Y ∃Zf(X,Y, Z) is valid, subject to the truth
assignment of X induced by S;

– {l} acts as a switch, that is, if removed from W (Φ)S then (D(Φ),W (Φ)S,{l}) 6|= ¬S for each outlier witness
set S.

More formally, let Φ = ∃X∀Y ∃Zf(X,Y, Z) be a quantified Boolean formula, where X = x1, . . . , xn, Y =
y1, . . . , ym, and Z are disjoint set of variables. With Φ, the default theory ∆(Φ) = (D(Φ),W (Φ)) is associated,
where W (Φ) is the set of literals {l,¬φ, x1, . . . , xn}, and D(Φ) = D1 ∪D2 ∪D3 ∪D4, where:

D1 =

{
δ1,1,i =

xi : x
′
i

x′i
, δ1,2,i =

: ¬xi
¬xi

, δ1,3,i =
¬φ : xi
xi

, δ1,2,4 =
¬xi : x′i
x′i

| i = 1, . . . , n

}
D2 =

{
δ2,1 =

: φ

φ
, δ2,2 =

: ¬l
¬l

, δ2,3 =
¬l : ¬φ
¬φ

}
D3 =

{
δ3,1,j =

: yj
yj

, δ3,2,j =
: ¬yj
¬yj

| j = 1, . . . ,m

}
D4 =

{
δ4 =

x′1 ∧ . . . ∧ x′n ∧ ¬f(X,Y, Z) : ¬φ
¬φ

}
and X ′ = x′1, . . . , x

′
n are new letters. Occurrences of these letters can be removed from the defaults in D(Φ)

without affecting the correctness of the reduction. However, their use makes the reduction easier to understand.
Clearly, ∆(Φ) can be built in polynomial time. Now it is shown that Φ is valid iff there exists an outlier in ∆(Φ).

First of all, we note that each extension E of the default theory (D(Φ),W (Φ)S), where S is an arbitrary
subset of W (Φ), is the logical closure of a maximal consistent subset of the set U = (X ∪ X ′ ∪ Y ∪ Y ′ ∪
{l, φ}) ∪ ¬(X ∪ Y ∪ {l, φ}).

Claims 1-3 below take into account the role of the defaults belonging to the set D(Φ) defined above.
– Claim 1 Let S be a subset of W (Φ), and ∆′ = (D(Φ),W (Φ)S). Then l ∈ S implies that ∆′ 6|= ¬s for each
s ∈W (Φ) \ {l}.
Proof of Claim 1: Assume that l ∈ S. Then, by applying rules δ2,2 and δ2,3, there exists an extension E of
∆′ such that ¬φ ∈ E. Consequently, for each xi ∈ S, by defaults δ1,3,i (1 ≤ i ≤ n), there exists an extension
Ei of ∆′ such that xi ∈ Ei. 2

– Claim 2 Let S ⊆ W (Φ) be an outlier witness for an outlier set L ⊆ W (Φ) in ∆(Φ). Then {¬φ} ⊆ S ⊆
W (Φ) \ {l}.
Proof of Claim 2: Let ∆′ be the theory (D(Φ),W (Φ)S) and let ∆′′ be the theory (D(Φ),W (Φ)S,L). Suppose
that l ∈ S. From Claim 1, l ∈ S implies that ∆′ 6|= ¬s, for each s ∈ W (Φ) \ {l}. Hence, we can conclude
that l ∈ S implies that S = {l}. But, because of rule δ2,3 and as there does not exist a rule in D(Φ) having
l as its consequence, both ∆′ |= ¬l and ∆′′ |= ¬l, no matter what the value of L is. Thus, {l} cannot be an
outlier witness for any set in W (Φ), and S ⊆W (Φ) \ {l}.
Suppose now that ¬φ does not belong to S, i.e., that S ⊆ {x1, . . . , xn}. Since the literal ¬φ belongs to
W (Φ)S , there exists an extension E of ∆′ such that E ⊇ {x1, . . . , xn} which is obtained by applying
defaults δ1,3,i (1 ≤ i ≤ n), and S is not an outlier witness set, a contradiction. 2

– Claim 3 Let TX be a truth assignment on the set X of variables and let S = {xi ∈ X | TX(xi) =
false} ∪ {¬φ}. Then, for each extension E of (D(Φ),W (Φ)S), it holds that E ⊃ Lit(TX).
Proof of Claim 3: Assume that there exists an extensionE of (D(Φ),W (Φ)S) such thatE 6⊇ Lit(TX). Then
it is the case that there exists a letter xi, which is false according to TX , such that xi ∈ E. Since xi ∈ S, it is
the case that rule δ1,3,i is a generating default of E (while rule δ1,2,i is not). Notice now that the precondition
of rule δ1,3,i is ¬φ. As ¬φ ∈ S, it is the case that rule δ4 is also a generating default of E applied before rule
δ1,3,i. Since rule δ4 has the letter x′i in its precondition, it can be concluded that δ1,2,i is a generating default
of E applied before δ4 and that ¬xi ∈ E. Thus, δ1,3,i cannot be a generating default of E, or, equivalently,
xi 6∈ E, a contradiction. 2

We now continue with the main proof.
(⇒) Suppose that Φ is valid. Then there exists a truth assignment TX on the set X of variables such that TX
satisfies ∀Y ∃Zf(X,Y, Z). Let S = {xi ∈ X | TX(xi) = false} ∪ {¬φ}. We will show that S is an outlier
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witness for {l} in ∆(Φ).
For each truth assignment TY on the set of variables Y , consider the subset EY of the extensions of (D(Φ),W (Φ)S)
consisting of the extensionsEY such thatEY ⊃ Lit(TY ). In particular, by Claim 3, eachEY is such thatEY ⊃
Lit(TX)∪Lit(TY ). Since Φ is valid, it is the case that there exists a truth assignment TZ to the set of variables
Z such that TX ∪ TY ∪ TZ satisfies f(X,Y, Z). Hence, for each EY ∈ EY , it holds that ¬f(X,Y, Z) 6∈ EY ,
and the rule δ4 cannot be a generating default of the extension EY . To conclude, the sets EY induce a partition
of the set of all extensions of (D(Φ),W (Φ)S), and hence (D(Φ),W (Φ)S) |= ¬S.
(⇐) Suppose that there exists an outlier set L in ∆(Φ). Then there exists a nonempty set of literals S such that
S is an outlier witness set for L in ∆(Φ) and, from Claim 2, such that {¬φ} ⊆ S ⊆W (Φ) \ {l}.
Let TX be the truth assignment to the set of variables X such that TX(xi) = false, if xi ∈ S, and TX(xi) =
true, if xi 6∈ S. Then, by Claim 3, for each extension E of (D(Φ),W (Φ)S), it holds that E ⊇ Lit(TX). Now
it is shown that TX satisfies ∀Y ∃Zf(X,Y, Z), i.e., that Φ is valid. For each truth assignment TY to the set of
variables Y , there exists a subset EY of the extensions of (D(Φ),W (Φ)S) that is the set of all the extensions
EY such that EY ⊃ Lit(TY ). We also recall that EY ⊃ Lit(TX).
Thus, in order for L to be an outlier in ∆(Φ), it must be the case that, for each set of literals Lit(TY ); for each
set of extensions EY ; and for each extension EY ∈ EY , it holds that φ ∈ EY . By defaults δ2,1 and δ4, φ ∈ EY
if and only if ¬φ 6∈ EY if and only if δ4 is not a generating default of EY if and only if there exists a truth
assignment to the set of variables Z such that TX ∪ TY ∪ TZ satisfies f(X,Y, Z). As the sets of extensions EY
form a partition of the extensions of (D(Φ),W (Φ)S), we can conclude that Φ is valid.
As for the outlier set L, note that S is always an outlier witness set for L = {l} in ∆(Φ). Indeed, consider the
theory ∆′′ = (D(Φ),W (Φ)S,{l}). It follows from Claim 1 that ∆′′ 6|= ¬S.

2. (Membership) Analogous to Point 1 of Theorem 4.1, the only difference being that an NP oracle is used in place
of a ΣP

2 oracle.
(Hardness) Let Φ = ∃X∀Y f(X,Y ) be a quantified Boolean formula in disjunctive normal form, where

X = x1, . . . , xn and Y = y1, . . . , ym are disjoint set of variables, and f(X,Y ) = D1 ∨ . . . ∨ Dr, with
Dk = tk,1 ∧ tk,2 ∧ tk,3, and each tk,1, tk,2, tk,3 is a literal on the set X ∪ Y (k = 1, . . . , r). The default theory
∆(Φ) = (D(Φ),W (Φ)) is associated with Φ, where W (Φ) = {l,¬φ, x1, . . . , xn} is a set of letters, with l and
φ being new letters that are distinct from those occurring in Φ, and D(Φ) = D1 ∪D2 ∪D3 ∪D4 is identical to
the set of defaults reported in point 1 of Theorem 4.1 except for set D4 which is:

D4 =

{
δ4,h,k =

x′1 ∧ . . . ∧ x′n ∧ ¬tk,h : ¬dk
¬dk

| k = 1, . . . , r;h = 1, 2, 3

}
∪

∪
{
δ4 =

¬d1 ∧ . . . ∧ ¬dr : ¬φ
¬φ

}
where d1, . . . , dr are new letters that are distinct from those occurring in Φ. Clearly, ∆(Φ) can be built in
polynomial time. By exactly following the same line of reasoning as in Theorem 4.1 point 1, it can be shown
that Φ is valid iff there exists an outlier in ∆(Φ).

2

Proof of Theorem 4.3:
OUTLIER(L) on propositional default theories is

1. ΣP3 -complete, for general theories, and
2. ΣP2 -complete, for DF theories.

Proof:
1. (Membership) The proof is analogous to that used in Point 1 of Theorem 4.1.

(Hardness) The reduction is the same as that in Point 1 of Theorem 4.1. Clearly, Φ is valid iff {l} is an outlier
set for ∆(Φ).

2. The proof is analogous to that used in Point 2 of Theorem 4.1.
2

Proof of Theorem 4.4:
OUTLIER(S) on propositional default theories is
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1. DP
2 -complete, for general theories, and

2. DP -complete, for DF theories.
Proof:

1. (Membership) See Section 4.2.
(Hardness) Let ∆1 = (D1,W1) and ∆2 = (D2,W2) be two normal propositional default theories, let s1, s2

be two letters, and let q be the problem ((∆1 |= s1) ∧ (∆2 6|= s2)). W.l.o.g, it can be assumed that ∆1 and ∆2

contain different letters.
Notice that, given a normal default theory (D,W ) and a literal q, the problem of deciding if ∆ |= q is ΠP2 -
complete even in the case in which W is empty. Thus, in the following we assume that both W1 and W2 are
empty sets.

Problem q is associated with the default theory ∆(q) = (D(q),W (q)) which is defined as follows. Let
D(q) = { s2∧α:ββ | α:ββ ∈ D1 } ∪D2, and W (q) = {¬s1, s2}. We will show that q is true iff {¬s1} is a witness
for some outlier in ∆(q). Note that q is the conjunction of a ΠP2 -hard and a ΣP2 -hard problem, which proves
DP

2 -hardness.
(⇒) Suppose that q is true. We will show that {¬s1} is an outlier witness for {s2} in ∆(q). Consider the

theory ∆′ = (D(q),W (q){¬s1}). First, we note that ∆′ |= s1. Indeed, from ∆1 |= s1 and s2 ∈ W (q){¬s1}, it
can be concluded that ∆′ |= s1 by means of defaults coming from the set D1.
Consider now the theory ∆′′ = (D(q),W (q){¬s1},{s2}). As ∆2 6|= s2, there exists an extension E of ∆′′ such
that s2 does not belong to E, and its associated set DE of generating defaults does not contain any rule from
the set of defaults D(q) \D2. We also note that ∆′′ is consistent, as both ∆1 and ∆2 are consistent. Thus it can
be concluded that ∆′′ 6|= s1. Hence, {¬s1} is an outlier witness for {s2} in ∆(q).

(⇐) Suppose that {¬s1} is a witness for some outlier set L in ∆(q). Let ∆′ and ∆′′ denote the theories
(D(q),W (q){¬s1}) and (D(q),W (q){¬s1},L) respectively.
First, we note that ∆′ |= s1. As the literal s1 occurs only in the rules of D(q) coming from D1, and the rules in
D2 have no letters in common with these rules, except for letter s2, and s2 ∈W (q){¬s1}, then it is the case that
∆1 |= s1.
In order for ∆′′ 6|= s1 to hold, L must include the letter s2. Since W (q) = {¬s1, s2}, L must be equal to {s2}.
Clearly, it must also be the case that ∆′′ 6|= s2, i.e., that ∆2 6|= s2. This proves that the problem q is indeed
verified.

2. Both membership and hardness are analogous to Point 1 of Theorem 4.4.
2

Proof of Theorem 4.6:
OUTLIER(S)(L) on propositional default theories is

1. DP
2 -complete, for general theories, and

2. DP -complete, for DF theories.
Proof: The membership proof is identical to that of Theorem 4.4. The hardness proof is identical to that of Theorem
4.4, but with a minor addendum. Indeed, while in the problem considered in Theorem 4.4, the outlier set L is unknown
and the outlier witness set S is part of the input, in the problem considered here both the outlier set L and the
witness set S are part of the input. Note that the reduction employed in Theorem 4.4 outputs a default theory ∆(q) =
(D(q),W (q)) (we refer to that theorem for the form of the formula q), with W (q) = {s1,¬s2}, such that S = {¬s1}
is a witness set in ∆(q) if and only if q is valid. It can be inferred also that S is a witness set if and only if L = {s2}
is an outlier set. Thus, to conclude the hardness proof, it is sufficient to include the sets L = {s2} and S = {¬s1}
together with the theory ∆(q) as part of the input for the problem OUTLIER(S)(L). 2

Proof of Theorem 4.7:
OUTLIER-MIN(L) on general propositional default theories is

1. DP
3 -complete, for general theories, and

2. DP
2 -complete, for DF theories.

Proof:
1. (Membership) Given a default theory ∆ = (D,W ) and a set of literals L ⊆ W , we must show (i) that L is an

outlier in ∆, i.e., that there exists a set S ⊆ WL such that (D,WS) |= ¬S and (D,WS,L) 6|= ¬S (query q′),
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and (ii) that L is a minimal outlier, i.e., that for each nonempty subset L′ ⊂ L, L′ is not an outlier in ∆, i.e.,
that for each subset S′ ⊂ (W \ L′), (((D,WS′) 6|= ¬S′) ∨ ((D,WS′,L′) |= ¬S′)) holds (query q′′).

Query q′ can be solved by a polynomial time nondeterministic Turing machine with a ΣP2 oracle that guesses
the set S and then calls the oracle twice to decide ((D,WS) |= ¬S)∧((D,WS,L) 6|= ¬S), and hence it is in ΣP3 .
Furthermore, the negation of query q′′ can be decided by a polynomial time nondeterministic Turing machine
with a ΣP2 oracle, that guesses the two sets L′ and S′ and then calls the oracle two times to decide whether Q
holds, and hence it is in ΠP3 . Summarizing, the problem is the conjunction of two independent problems, one
from ΣP3 and the other from ΠP3 , which implies that the problem is in DP

3 .
(Hardness) Completeness of query OUTLIER-MIN(L) for general theories can be proved by reducing the

problem of deciding the validity of the formula

F = ((∃X)(∀Y )(∃Z)f(X,Y, Z)) ∧ ((∀W )(∃U)(∀V )g(W,U, V ))

to the problem OUTLIER-MIN(L), where f(X,Y, Z) is a Boolean formula in conjunctive normal form and
g(X,Y, Z) is a Boolean formula in disjunctive normal form. Formula F is the conjunction of a QBE3,∃ and a
QBE3,∀ formula, a complete problem for the class DP

3 . A similar reduction, but considering the conjunction of
a QBE2,∃ formula and a QBE2,∀ formula, can be used to prove the result for DF default theories. In particular,
the default theory (D(F ),W (F )) is associated to the formula F such that:

(a) the outlier set L precisely consists of two literals, that is L = {l1, l2};
(b) W (F )L is partitioned into two subsets SX and SW such that, for each subset S of W (F )L, there exists a

bijection between the sets S ∩SX and S ∩SW and each possible truth assignment for the variables X and
W , respectively;

(c) D(F ) is such that
– (D(F ),W (F )S) |= ¬(S ∩ SX), and
– (D(F ),W (F )S,{l1}) |= ¬(S ∩ SX), and
– (D(F ),W (F )S,{l2}) |= ¬(S ∩ SX), and
– (D(F ),W (F )S,{l1,l2}) 6|= ¬(S ∩ SX)

iff (∀Y )(∃Z)f(X,Y, Z) holds true subject to the truth assignment for the variables in the set X induced
by S ∩ SX ;

(d) D(F ) is such that
– (D(F ),W (F )S) |= ¬(S ∩ SW ), and
– (D(F ),W (F )S,{l1}) 6|= ¬(S ∩ SW ), and
– (D(F ),W (F )S,{l2}) 6|= ¬(S ∩ SW )

iff (∀U)(∃V )¬g(X,Y, Z) holds true subject to the truth assignment for the variables in the set W
induced by S ∩ SW .

It follows from point (d) above that, in order for {l1, l2} to be a minimal outlier set, then it is the case that
there does not exist a truth assignment to the variables of the set W such that (∀U)(∃V )¬g(X,Y, Z) is true,
that is, that the formula (∀W )(∃U)(∀V )g(W,U, V ) is true. As a consequence, a witness S for L must be such
that S ⊆ SX and, from point 3 above, S encodes a truth assignment for the variables of the set X such that
(∀Y )(∃Z)f(X,Y, Z) is true. Note that by point (c) above, a subset S of SX represents a witness for neither
{l1} nor {l2}, and this finally proves that L is a minimal outlier set in (D(F ),W (F )) iff the formula F is true.

We now proceed to the detailed proof. Let Φ = ∃X∀Y ∃Zf(X,Y, Z) and Ψ = ∀W∃U∀V g(W,U, V ) be two
quantified Boolean formulas, where X = x1, . . . , xn, Y = y1, . . . , ym, Z, W = w1, . . . , wp, U = u1, . . . , uq,
and V are disjoint set of variables. Let F be the formula Φ ∧Ψ.

The normal default theory ∆(F ) = (D(F ),W (F )) is associated With F , where W (F ) is the set of letters
{l1, l2,¬φ, x1, . . . , xn, ψ, w1, . . . , wp} where l1, l2, φ, and ψ are new letters distinct from those occurring in F ,
and D(F ) is D1 ∪ . . . ∪D8, where:

D1 =

{
xi : x

′
i

x′i
,
: ¬xi
¬xi

,
¬xi : x′i
x′i

,
¬φ : xi
xi

| i = 1, . . . , n

}
D2 =

{
: yj
yj

,
: ¬yj
¬yj

| j = 1, . . . ,m

}
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D3 =

{
l1 ∧ x′1 ∧ . . . ∧ x′n ∧ ¬f(X,Y, Z) : ¬φ

¬φ
,
l2 ∧ x′1 ∧ . . . ∧ x′n ∧ ¬f(X,Y, Z) : ¬φ

¬φ

}
D4 =

{
l1 : φ

φ
,
l2 : φ

φ

}
D5 =

{
wk : w′

k

w′
k

,
: ¬wk
¬wk

,
¬wk : w′

k

w′
k

,
ψ : wk
wk

| k = 1, . . . , p

}
D6 =

{
: uh
uh

,
: ¬uh
¬uh

| h = 1, . . . , q

}
D7 =

{
l1 ∧ l2 ∧ w′

1 ∧ . . . ∧ w′
p ∧ g(W,U, V ) : ψ

ψ

}
D8 =

{
l1 ∧ l2 : ¬ψ
¬ψ

}
Clearly W (F ) is consistent and ∆(F ) can be built in polynomial time. Now it is shown that F is valid iff
{l1, l2} is a minimal outlier set in ∆(F ).

(⇒) Suppose that F is valid. We will show that {l1, l2} is a minimal outlier in ∆(F ).
Since F is valid, there exists a truth assignment TX to the variables in the set X such that TX satisfies
∀Y ∃Zf(X,Y, Z). Let S = {¬φ} ∪ {xi | TX(xi) = false}. We will show that S is a witness for the out-
lier set {l0, l1}. First note that, by rules in the set D1, each extension E of (D(F ),W (F )S) is such that xi ∈ E
(¬xi ∈ E resp.) if xi is true (false resp.) according to TX . Furthermore, by rules in the set D2, each extension
E of (D(F ),W (F )S) can be associated with a truth assignment TY to the set Y of variables. In order for the
literal ¬φ to belong to some extension of the theory (D(F ),W (F )S), it must be the case that, by the rules in the
set D3, there exists a truth assignment TY to the set Y of variables such that (∀Z)¬f(X,Y, Z) is true subject
to the truth assignment TX ∪ TY , or, equivalently, that the formula ¬(∀Y )(∃Z)f(X,Y, Z) is true subject to the
truth assignment TX , and that contradicts the definition of TX . It follows then that ¬φ does not belong to every
extension of (D(F ),W (F )S). By the rules in the sets D1 and D4, we can conclude that the negation of the
variables in the set S is entailed by the default theory (D(F ),W (F )S).
Finally, the default theory (D(F ),W (F )S,{l1,l2}) does not entail ¬S, since prerequisites of both the two rules
in the set D4 are removed from W (F ) and do not appear in the conclusion of any default rule in ∆(F ). Thus,
{l1, l2} is an outlier set in ∆(F ).

Next, it is shown that {l1, l2} is a minimal outlier set in ∆(F ), that is that neither {l1} nor {l2} are witness
sets in ∆(F ). First of all, note that neither l1 nor l2 can belong to a witness set (recall that both ¬l1 and
¬l2 do not appear in the consequence of any rule in D(F )). Furthermore, for each subset S of W (F ), let S′

denote the set S ∩ {¬φ, x1, . . . , xn} and S′′ denote the set S ∩ {ψ,w1, . . . , wp}. Note that if S′′ = ∅ then
S = S′ ⊆ {¬φ, x1, . . . , xn} cannot be a witness set for {l1} ({l2} resp.). Indeed, as shown above, in order for
(D(F ),W (F )S′) |= ¬S′ to hold, it is the case that S′ encodes a truth assignment to the variables in the set
X and, consequently, that φ belongs to every extension of the default theory (D(F ),W (F )S′). Nevertheless,
in this scenario, the default theory (D(F ),W (F )S′,{l1}) ((D(F ),W (F )S′,{l2}) resp.) will continue to entail φ
due to rules belonging to the set D4.
It can be concluded that if {l1} ({l2} resp.) is an outlier set in ∆(F ), then its associated witness set S must
be such that S′′ = S ∩ {ψ,w1, . . . , wp} is not empty. Note that ψ must belong to S′′, for otherwise S does
not encode a witness by rules ψ:wk

wk
(1 ≤ k ≤ p) in the set D5. Now, for the sake of contradiction assume

that {l1} ({l2} resp.) is an outlier set in ∆(F ). Notice that by rules in the set D5, for each extension E of
(D(F ),W (F )S), wk ∈ E (¬wk ∈ E resp.) if s′k 6∈ S′′ (s′k ∈ S′′ resp.). Hence, the set S′′ encodes a
truth assignment to the variables in the set W . Furthermore, by the rules in the set D6, each extension E
of (D(F ),W (F )S) can be associated with a truth assignment TU to the variables in the set U . Since {l1}
({l2} resp.) is an outlier set, then the default theory (D(F ),W (F )S) entails ¬S′′, and ¬ψ belongs to every
extension E of (D(F ),W (F )S). By rules in the sets D7, it can be concluded that, for each truth assignment
TU to the set of variables U , there exists a truth variable assignment to the set of variables V which makes
the formula g(W,U, V ) false, for otherwise the literal ψ belongs to at least one extension of the default theory
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(D(F ),W (F )S). It can be concluded that there exists a truth assignment TW to the set of variables W such
that (∀U)(∃V )¬g(W,U, V ) is true, that is, that ¬Ψ is valid, which contradicts the fact that F = Φ∧Ψ is valid.
Hence, we can conclude that neither {l1} nor {l2} are outlier sets in ∆(F ). Thus, {l1, l2} is a minimal outlier
set in ∆(F ).

(⇐) Suppose that {l1, l2} is a minimal outlier in ∆(F ). Since {l1, l2} is an outlier set, there exists a subset S
of {¬φ, x1, . . . , xn, ψ, w1, . . . , wp} such that (D(F ),W (F )S) |= ¬S. Let S′ = S∩{¬φ, x1, . . . , xn}. Assume
by contradiction that there exists a nonempty subset S′′ of {ψ,w1, . . . , wp} such that S = S′ ∪ S′′ is a witness
set for {l1, l2}. The set S′′ must contain the literal ψ, by rules ψ:wk

wk
(1 ≤ k ≤ p) in the set D5. In order for

(D(F ),W (F )S) |= ¬S′′ to hold, it must be the case that ¬ψ is entailed by the default theory (D(F ),W (F )S).
Since ¬ψ is entailed only by the rule in the set D8, it can be concluded that both {l1} and {l2} are outlier sets
in ∆(F ), having the associated witness set S′′, which contradicts the fact that {l1, l2} is a minimal outlier set.
Hence, the set S′′ must be empty.
As already observed in the previous point, rules in the set D5 associate with each subset S′′ a truth assignment
TW to the set of variablesW and rules in the setD6 associate with each extension of (D(F ),W (F )S) a truth as-
signment to the variables in the setU , while rules in the setD7 evaluate whether TW implies ∀U∃V ¬g(W,U, V )
or not. Hence, from the fact that S′′ must be an empty set, it can also be concluded that there is no truth assign-
ment TW such that ∀U∃V ¬g(W,U, V ), i.e. that Ψ = ∀W∃U∀V g(W,U, V ) is valid.
Since S′′ is empty, it is the case that S = S′ ⊆ {s0, . . . , sn}. In order for S to be a witness set, it must be the
case that for each extension E of (D(F ),W (F )S′), ¬S′ ∈ E holds and, hence, that φ ∈ E. Now, note that by
the rules in the set D1, xi ∈ E (¬xi ∈ E resp.) if si 6∈ S′ (si ∈ S′ resp.). Let TX be the truth assignment to
the set of variables X such that TX(xi) = true (TX(xi) = false resp.) if si 6∈ S′ (si ∈ S′ resp.). By the rules
in the set D2, each E can be associated with a truth assignment TE to the set of variables Y . In particular, TE
is such that TE(yj) = true (TE(yj) = false resp.) if yj ∈ E (yj 6∈ E resp.). Since, for each extension E of
(D(F ),W (F )S′), it holds that φ ∈ E, by the rules in the set D3 it follows that ¬f(X,Y, Z) 6∈ E, and hence
it follows that for each truth assignment TE to the set of variables Y there exists a truth assignment TZE

to the
set of variables Z such that TX ∪ TE ∪ TZE satisfies the formula f(X,Y, Z). To conclude, it is the case that
S′ encodes a truth assignment TX for the variables in the set X such that TX implies ∀Y ∃Zf(X,Y, Z), and
hence it follows that the formula Φ is valid. It can be therefore eventually concluded that F = Φ ∧Ψ is a valid
formula.

2. (Membership) This part is analogous to the membership part of Point 1 of this theorem.
(Hardness) Let Φ = ∃X∀Y f(X,Y ) and Ψ = ∀Z∃Wg(Z,W ) be two quantified Boolean formulas, where

X = x1, . . . , xn, Y = y1, . . . , ym, Z = z1, . . . , zl, W = w1, . . . , wp are disjoint sets of variables; f(X,Y ) =
d1 ∨ . . . ∨ dr is a formula in disjunctive normal form, where each disjunct dj (1 ≤ j ≤ r) is the conjunction of
three literals, that is, dj = tj,1 ∧ tj,2 ∧ tj,3; and g(Z,W ) = c1 ∧ . . . ∧ cs is a formula in conjunctive normal
form, where each conjunct ch (1 ≤ h ≤ s) is the disjunction of three literals, that is, ch = uh,1 ∨ uh,2 ∨ uh,3.

Let F be the formula Φ ∧ Ψ. We associate with F the default theory ∆(F ) = (D(F ),W (F )), which is
identical to the theory described in Point 1 of this theorem, except for the sets of rules D3 and D7 that are as
follows:

D3 =

{
li ∧ x′1 ∧ . . . ∧ x′n ∧ ¬tj,k : ¬dk

¬dk
| i = 1, 2; j = 1, . . . , r; k = 1, 2, 3

}
∪

∪
{
¬d1 ∧ . . . ∧ ¬dp : ¬φ

¬φ

}
D7 =

{
l1 ∧ l2 ∧ w′

1 ∧ . . . ∧ w′
p ∧ ¬uh,1 ∧ ¬uh,2 ∧ ¬uh,3 : ψ

ψ
| h = 1, . . . , s

}
The rest of the proof is analogous to that of Point 1 of this theorem.

2

Proof of Theorem 4.8:
OUTLIER-MIN(S)(L) on general propositional default theories is

1. ΠP
3 -complete, for general theories, and
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2. ΠP
2 -complete, for DF theories.

Proof:
1. (Membership) In order to answer query OUTLIER-MIN(S)(L), it must be verified that (problem q′) S and L

satisfy Definition 3.2, i.e., (D,WS) |= ¬S and (D,WS,L) 6|= ¬S, and that (problem q′′) for each proper subset
L′ of L, and S′ of WL′ , S′ and L′ do not satisfy Definition 3.2, i.e., (D,WS′) 6|= ¬S′ or (D,WS′,L′) |= ¬S′.

Problem q′ coincides with OUTLIER(S)(L), and hence it is in DP
2 (DP resp.) for general (DF resp.) theories.

Furthermore, problem q′′ is in ΠP
3 (ΠP

2 resp.) for general (DF resp.) theories, since its negation can be answered
by a nondeterministic polynomial time Turing machine that guesses a pair of disjoint subsets L′ ⊆ L and
S′ ⊆WL′ and then checks that they form an outlier and witness pair by using an oracle in ΣP

2 . Thus, the overall
problem is in ΠP

3 (ΠP
2 resp.).

(Hardness) Let Ψ = ∀W∃U∀V g(W,U, V ) be a quantified Boolean formula, where W = w1, . . . , wp, U =
u1, . . . , up, and V are disjoint set of variables. With Ψ, the default theory ∆(Ψ) = (D(Ψ),W (Ψ)) is associated,
where W (Ψ) is the set of literals {l1, l2, s, ψ, w1, . . . , wp} where l1, l2, s and ψ are new letters distinct from
those occurring in Ψ, and D(Ψ) is composed of the default rules in the sets D5, D6, D7, and D8 reported in the
reduction shown in Point 1 of Theorem 4.7, plus the set of rules D0 = { l1:¬s¬s ,

l2:¬s
¬s ,

l1∧l2:¬s
¬s }.

Next, it is shown that Ψ is valid iff L = {l1, l2} is a minimal outlier set with outlier witness set S = {s} in
∆(Ψ).

It follows from Point 1 of Theorem 4.7, that {l1} and {l2} are outlier sets in (D(Ψ) − D0,W (Ψ)), with
associated witness set SW ⊆ {ψ,w1, . . . , wp}, if and only if Ψ is not valid. Thus, in order for L to be a minimal
outlier set, it must be the case that Ψ is valid. Finally, by rules in the set D0, it holds that
– (D(Ψ),W (Ψ){s}) |= ¬s,
– (D(Ψ),W (Ψ){l1},{s}) |= ¬s,
– (D(Ψ),W (Ψ){l2},{s}) |= ¬s, and
– (D(Ψ),W (Ψ){l1,l2},{s}) 6|= ¬s.
Hence, the result follows.

2. Both membership and hardness are analogous to Point 1 of this theorem.
2

Appendix B. Proofs for Section 4.3

Proof of Theorem 4.11:
For general EDPLs,

1. OUTLIER is ΣP3 -complete,
2. OUTLIER[k] is ΣP3 -complete,
3. OUTLIER(L) is ΣP3 -complete,
4. OUTLIER(S) is DP

2 -complete,
5. OUTLIER[k](S) is DP

2 -complete,
6. OUTLIER(S)(L) is DP

2 -complete,
7. OUTLIER-MIN(L) is DP

3 -complete, and
9. OUTLIER-MIN(S)(L) is ΠP

3 -complete.
Proof:

1. (Membership) Given a rule-observations program P = (D,W ), we must show that there exist two disjoint
sets S ⊆ W and L ⊆ W such that PS |= ¬S (problem q′) and PS,L 6|= ¬S (problem q′′). Problem q′ is
ΠP2 -complete, while problem q′′ is ΣP2 -complete [21]. Thus, we can build a polynomial-time nondeterministic
Turing machine equipped with a ΣP2 oracle that solves query OUTLIER as follows: the machine will first guess
the sets S and L and then solve queries q′ and q′′ by calling the oracle twice.

(Hardness) Let Φ = ∃X∀Y ∃Zf(X,Y, Z) be a quantified Boolean formula, where X = x1, . . . , xn, Y =
y1, . . . , ym and Z = z1, . . . , zl are disjoint set of variables, and f(X,Y, Z) is a Boolean formula in conjunctive
normal form, i.e., f(X,Y, Z) = C1 ∧ . . . ∧ CN , with Ch = th,1 ∨ th,2 ∨ th,3, and each th,1, th,2, th,3 is a
literal in the set X ∪ Y ∪ Z, for h = 1, . . . , N . We associate with Φ the rule-observations program P (Φ) =
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〈D(Φ),W (Φ)〉, where W (Φ) = {o, x0, x1, . . . , xn} consists of the letters in the set X plus the new letters x0
and o which are distinct from those occurring in Φ, and D(Φ) is

r0 : ¬φ← not o

r1,i : ¬xi | xi ← ¬φ (0 ≤ i ≤ n)

r2,i : ¬xi ← not xi, not ¬φ (0 ≤ i ≤ n)

r3,i : x′i ← not xi (1 ≤ i ≤ n)

r4,j : yj | y′j ← (1 ≤ j ≤ m)

r5,k : zk | z′k ← (1 ≤ k ≤ l)

r6,k : zk ← ¬φ (1 ≤ k ≤ l)

r7,k : z′k ← ¬φ (1 ≤ k ≤ l)

r8,h : ¬φ← σ(¬th,1), σ(¬th,2), σ(¬th,3) (1 ≤ h ≤ N)

where also X ′ = x′1, . . . , x
′
n, Y ′ = y′1, . . . , y

′
m, and Z ′ = z′1, . . . , z

′
l are new letters distinct from those

occurring in Φ, and σ : X ∪¬X ∪ Y ∪¬Y ∪Z ∪¬Z 7→ X ∪X ′ ∪ Y ∪ Y ′ ∪Z ∪Z ′ is the following mapping:

σ(t) =



x′i if t = ¬xi (1 ≤ i ≤ n)

y′j if t = ¬yj (1 ≤ j ≤ m)

z′k if t = ¬zk (1 ≤ k ≤ l)

t otherwise

Clearly, P (Φ) can be built in polynomial time. Now we show that Φ is valid iff there exists an outlier in P (Φ).
Given a truth assignment T on a subset of X ∪ Y ∪ Z, let I(T ) denote the context σ(Lit(T )).

(⇒) Suppose that Φ is valid. We shall show that L = {o} is an outlier in P (Φ). Then there exists a
truth assignment TX to the variables in the set X such that TX satisfies ∀Y ∃Zf(X,Y, Z). Let S = {x0} ∪
¬(Lit(TX)

−
), We will show that P (Φ)S |= ¬S.

By contradiction, suppose that there exists an answer set M ′ of P (Φ)S such that ¬S 6⊂ M ′. By rules r2,i, it is
the case that ¬φ ∈M ′. Furthermore, by rules r1,i, M ′ is of the form I(TX)∪ I(TY )∪Z ∪Z ′ ∪ {¬φ, o} ∪ S′,
where TY denotes a truth assignment to the set of variables in Y and S′ is a set of the form {s | x ∈ S ∧ (s =
x ∨ s = ¬x)} such that S′ 6= ¬S. As a consequence, the set M = I(TX) ∪ I(TY ) ∪ Z ∪ Z ′ ∪ {¬φ, o} ∪ ¬S,
where TY denotes a truth assignment to the set of variables in Y , is an answer set of P (Φ)S .
As M is an answer set of P (Φ)S , and hence a minimal context closed under Red(P (Φ)S ,M), it follows that
for each truth assignment TZ to the variables in the set Z, the subsetM ′′ = I(TX)∪I(TY )∪I(TZ)∪{o}∪¬S
of M is not a context closed under Red(P (Φ)S ,M). Thus, for each TZ there exists an h ∈ {1, . . . , N} such
that σ(¬th,1), σ(¬th,2), σ(¬th,3) ∈ M ′′. We can conclude that there exists an answer set M ′ of P (Φ)S such
that ¬S 6⊂M ′ if and only if TX satisfies

∃Y ∀Z
N∨
r=1

(¬tr,1 ∧ ¬tr,2 ∧ ¬tr,3) ≡ ¬∀Y ∃Zf(X,Y, Z),

which contradicts the fact that TX satisfies ∀Y ∃Zf(X,Y, Z). Hence, P (Φ)S |= ¬S. Let L = {o}; then, by
rules r9 and r1,i, P (Φ)S,L 6|= ¬S. Thus, L = {o} is an outlier set with outlier witness set S.

(⇐) Suppose that there exists an outlier L ⊆W (Φ) with witness S ⊆W (Φ) in P . As ¬o cannot be entailed
by P (Φ)S , it must be the case that S ⊆ X ∪ {x0}. From what is stated above, P (Φ)S |= ¬S implies that the
truth value assignment TX on the set of variables X such that TX(xi) = false if and only if xi ∈ S, satisfies
∀Y ∃Zf(X,Y, Z), i.e., that Φ is valid. To conclude, the literal L = {o} is always an outlier having such a
witness.
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2. The proof is analogous to that of Point 1.
3. The proof is analogous to that of Point 1.
4. (Membership) Given the rule-observations program P = (D,W ), and a subset S ⊆ W , we should verify that

there existsL ⊆WS such that PS |= ¬S (problem q′) and PS,L 6|= ¬S (problem q′′). We have already noted that
problem q′ is ΠP

2 -complete. As for problem q′′, it is ΣP
2 -complete as it can be answered by a polynomial-time

nondeterministic Turing machine with an NP oracle as follows: the machine guesses both an outlier L ⊆ WS

and a consistent context M of PS,L such that ¬S 6⊆ M , verifies that M is closed under Red(PS,L,M), and
decides whether M ′ ⊂ M exists such that M ′ is closed under Red(PS,L,M) with a call to the NP oracle.
Hence, we have to decide the conjunction q′ ∧ q′′, i.e., a DP

2 problem.
(Hardness) Let r be an EDLP rule, and let h(r) and b(r) denote respectively the head and the body of r. Let

P ′ and P ′′ be two EDLPs. W.l.o.g. assume that P ′ and P ′′ contain no common letters and also that they do not
contain the letters s and l. Consider the rule-observations program P = (D,W ) where D = {h(r)← b(r), l :
r ∈ P ′} ∪ {h(r) ← b(r), not l : r ∈ P ′′} and W = {s, l}. By noting that ANSW(P ′) = ANSW(P{s}) and
ANSW(P ′′) = ANSW(P{s},{l}), it follows that P ′ is inconsistent (a ΠP2 -complete check, see [21], Theorem
39) and P ′′ is consistent (a ΣP2 -complete check, see [21], Theorem 40) iff {l} is an outlier with witness {s} in
P .

5. The proof is analogous to that of Point 4.
6. The proof is analogous to that of Point 4.
7. (Membership) Analogous to the membership part of Theorem 4.7.

(Hardness) Let Φ = ∃X∀Y ∃Zf(X,Y, Z) be a quantified Boolean formula, where X = x1, . . . , xn, Y =
y1, . . . , ym, and Z = z1, are disjoint sets of variables, f(X,Y, Z) is the Boolean formula in conjunctive normal
form C1 ∧ . . . ∧CN , with Ch = th,1 ∨ th,2 ∨ th,3, and each th,1, th,2, th,3 is a literal in the set X ∪ Y ∪ Z, for
h = 1, . . . , N .

Let Ψ = ∀W∃U∀V g(W,U, V ) be another quantified Boolean formula, where W = w1, . . . , wp, U =
u1, . . . , uq, and V = v1, . . . , vr are disjoint sets of variables, and g(W,U, V ) is the Boolean formula in disjunc-
tive normal form D1 ∨ . . . ∨DM , with Dh = sh,1 ∧ sh,2 ∧ sh,3, and each sh,1, sh,2, sh,3 is a literal in the set
W ∪ U ∪ V , for h = 1, . . . ,M .
Let F be the formula Φ ∧ Ψ. We associate with F the rule-observations program P (F ) = 〈D(F ),W (F )〉,
where

W (F ) = {o1, o2, x0, x1, . . . , xn, w0, w1, . . . , wp}
consists of the letters in the set X ∪ W plus the new letters x0, w0, o1 and o2 that are distinct from those
occurring in F , and D(F ) is

r′′0,1 : ¬ψ ← not o1

r′0 : ¬φ← not o1, not o2 r′′0,2 : ¬ψ ← not o2

r′1,i : ¬xi | xi ← ¬φ (0 ≤ i ≤ n) r′′1,i : ¬wi | wi ← ¬ψ (0 ≤ i ≤ p)

r′2,i : ¬xi ← not xi, not ¬φ (0 ≤ i ≤ n) r′′2,i : ¬wi ← not wi, not ¬ψ (0 ≤ i ≤ p)

r′3,i : x′i ← not xi (1 ≤ i ≤ n) r′′3,i : w′
i ← not wi (1 ≤ i ≤ p)

r′4,j : yj | y′j ← (1 ≤ j ≤ m) r′′4,j : uj | u′j ← (1 ≤ j ≤ q)

r′5,k : zk | z′k ← (1 ≤ k ≤ l) r′′5,k : vk | v′k ← (1 ≤ k ≤ r)

r′6,k : zk ← ¬φ (1 ≤ k ≤ l) r′′6,k : vk ← ¬ψ (1 ≤ k ≤ r)

r′7,k : z′k ← ¬φ (1 ≤ k ≤ l) r′′7,k : v′k ← ¬ψ (1 ≤ k ≤ r)

r′8,h : ¬φ← σ(¬th,1), σ(¬th,2), σ(¬th,3) (1 ≤ h ≤ N) r′8,0 : ¬ψ ← ¬d1, . . . ,¬dM

r′′8,1,h : ¬dh ← σ(¬sh,1) (1 ≤ h ≤M)

r′′8,2,h : ¬dh ← σ(¬sh,2) (1 ≤ h ≤M)

r′′8,3,h : ¬dh ← σ(¬sh,3) (1 ≤ h ≤M)

where also X ′ = x′1, . . . , x
′
n, Y ′ = y′1, . . . , y

′
m, Z ′ = z′1, . . . , z

′
l, W

′ = w′
1, . . . , w

′
p, U ′ = u′1, . . . , u

′
q, and

V ′ = v′1, . . . , v
′
r are new letters distinct from those occurring in F , and σ : X ∪ ¬X ∪ Y ∪ ¬Y ∪ Z ∪ ¬Z ∪
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W ∪¬W ∪U ∪¬U ∪ V ∪¬V 7→ X ∪X ′ ∪ Y ∪ Y ′ ∪Z ∪Z ′ ∪W ∪W ′ ∪U ∪U ′ ∪ V ∪ V ′ is the following
mapping:

σ(t) =



x′i, if t = ¬xi (1 ≤ i ≤ n)

y′j , if t = ¬yj (1 ≤ j ≤ m)

z′k, if t = ¬zk (1 ≤ k ≤ l)

w′
i, if t = ¬wi (1 ≤ i ≤ n)

u′j , if t = ¬uj (1 ≤ j ≤ m)

v′k, if t = ¬vk (1 ≤ k ≤ l)

t, otherwise

Clearly, P (F ) can be built in polynomial time. Now we show that F is valid iff {o1, o2} is a minimal outlier set
in P (F ).

The line of reasoning employed to prove the result is analogous to that of the hardness part of Theorem 4.7,
Point 1. The reader is referred to the discussion preceding the reduction therein for the explanation of that line
of reasoning. Next, technicalities concerning the reduction presented here are pointed out.

First of all, in order to understand the role of rules r′ (r′′, resp.) in the reduction depicted above, we note
that these rules have the same structure as the rules used in the reduction given in Point 1 of this proof, where a
ΣP

3 -complete problem is considered.
In particular, rules r′ serve the purpose of guaranteeing that (D(F ),W (F )S) |= ¬(S ∩ SX) if and only

if the formula Φ = ∃X∀Y ∃Zf(X,Y, Z) is satisfiable (see Point (c) of the discussion recalled above), while
rules r′′ serve the purpose of guaranteeing that (D(F ),W (F )S) |= ¬(S ∩ SW ) if and only if the formula
Ψ = ∃W∀U∃V ¬g(W,U, V ) is satisfiable (see Point (d) of the same discussion).

As for the relationship between the minimality of the outlier set {o1, o2} and the satisfiability of the formula
Φ ∧Ψ, this is taken care of by rules r′0, r′′0,1 and r′′0,2 (once again, refer to the discussion of Theorem 4.7, Point
1, and to Point 1 of this proof for details).

8. Both membership and hardness are analogous to that of Theorem 4.8. For the hardness part, we can make use
of rules r′′ defined in Point 7 of this proof, plus rules equivalent to the defaults in the set D0 defined in Point 1
of Theorem 4.8.

2

Appendix C. Proofs for Section 5

Proof of Theorem 5.3:
The data complexity of OUTLIER is ΣP

3 -complete.
Proof: (Membership) See Section 5.

(Hardness) To prove the completeness of the query OUTLIER, the ΣP3 -complete problem of deciding the validity of
a QBE3,∃ formula is reduced to it. A QBE3,∃ formula Φ has the form ∃X∀Y ∃Zf(X,Y, Z), where X = x1, . . . , xn,
Y = y1, . . . , ym, and Z are disjoint sets of variables, and f(X,Y, Z) is a propositional formula on X,Y, Z. Without
loss of generality, it can be assumed that the Boolean formula f(X,Y, Z) is in conjunctive normal form with exactly
three literals per clause, that is, that f(X,Y, Z) = c1 ∧ c2 ∧ . . . ∧ cr, with ck = tk,1 ∨ tk,2 ∨ tk,3, for k = 1, . . . , r.

We now describe a fixed default theory ∆FO = (DFO,WFO), where WFO does not contain atomic formulas,
and a mapping W (Φ) from any QBE3,∃ formula Φ to a set of ground literals, such that there exists an outlier in
∆FO(Φ) = (DFO,WFO ∪ W (Φ)) if and only if the formula Φ is satisfiable. We encode the formula Φ in the
extensional component W (Φ) of ∆FO(Φ) by means of the following sets of atoms:
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WX = {e(xi, xi+1) | i = 1, . . . , n− 1} ∪ {e(xn, x0)},

WY = {u(yj , yj+1) | j = 1, . . . ,m− 1} ∪ {u(ym, y0)}, and

Wf = {c(ck, ck+1, sgn(tk,1), let(tk,1), sgn(tk,2), let(tk,2), sgn(tk,3), let(tk,3)) | k = 1, . . . , r − 1}∪

{c(cr, c0, sgn(tr,1), let(tr,1), sgn(tr,2), let(tr,2), sgn(tr,3), let(tr,3))},

where sgn(`) is the constant p if ` is a positive literal, and the constant n if ` is a negative literal, while let(`) is
the propositional letter occurring in the literal `. Intuitively, atoms with functor e list existential variables in the set
X , atoms with functor u list universal variables in the set Y , and atoms with functor c list clauses of the formula
f(X,Y, Z). Variables in the set Z are not explicitly listed, since this is not needed for the sake of the reduction. In the
following the set WX ∪WY ∪Wf is denoted by WΦ.

It must be avoided that atoms in the setWΦ become part of an outlier or a witness, for otherwise the above encoding
of the formula Φ is invalidated. With this aim, the following rules, forming the set WFO, are employed:

r0 : f ∨ ¬f → t

r1 : t→ t(x0)

r2 : t→ e(x0, x1)

r3 : t→ u(y0, y1)

r4 : t→ c(c0, c1, p, x0, p, x0, p, x0)

r5 : (∀A)(∀B)(∃C)(e(A,B)→ e(B,C))

r6 : (∀A)(∀B)(∃C)(u(A,B)→ u(B,C))

r7 : (∀A)(∀B)(∃C)(∃V1) . . . (∃V12)(c(A,B, V1, V2, V3, V4, V5, V6)→ c(B,C, V7, V8, V9, V10, V12, V12))

Rules r2, r3, and r4 introduce one additional existential variable, a universal variable, and a clause, respectively, whose
roles are clarified below. Rules r5, r6, and r7 serve the purpose of making the overall theory inconsistent whenever at
least one atom in the set WΦ is removed from W (Φ). Indeed, assume that an atom of the form e(xi, xi+1) is removed
from W (Φ). Then the formula e(xi−1, xi) → e(xi, xi+1), and consequently also the formula r5, evaluates to false.
In particular, formula r5 is true if and only if the atomic formulas of the form e(xi, x(i+1)mod(n+1)) are either all true
or all false. Hence, it follows from formula r2 that if at least one of the atoms in the set WX is removed, then the
theory is inconsistent. The same reasoning can be applied for all the other atoms in the set WΦ. Assume that L is an
outlier with witness S in ∆FO(Φ) such that (L∪ S)∩WΦ 6= ∅. Then, the default theory (DFO,WFO ∪W (Φ)S,L) is
inconsistent and (DFO,WFO ∪W (Φ)S,L) |= ¬S, a contradiction. Thus, outliers and witnesses cannot contain atoms
belonging to the set WΦ.

Given a propositional variable v, we use the literals t(v) and ¬t(v) to represent the information that v is true and
that v is false, respectively, in a certain truth value assignment. The truth value of a 3CNF formula whose clauses are
encoded by means of the atoms above can be thus evaluated by using the following first-order formula:

F = (∀A)(∀B)(∀T1)(∀T2)(∀T3)
( (

c(A,B, p, T1, p, T2, p, T3)→ t(T1) ∨ t(T2) ∨ t(T3)
)
∧(

c(A,B, n, T1, p, T2, p, T3)→ ¬t(T1) ∨ t(T2) ∨ t(T3)
)
∧(

c(A,B, p, T1, n, T2, p, T3)→ t(T1) ∨ ¬t(T2) ∨ t(T3)
)
∧(

c(A,B, n, T1, n, T2, p, T3)→ ¬t(T1) ∨ ¬t(T2) ∨ t(T3)
)
∧(

c(A,B, p, T1, p, T2, n, T3)→ t(T1) ∨ t(T2) ∨ ¬t(T3)
)
∧(

c(A,B, n, T1, p, T2, n, T3)→ ¬t(T1) ∨ t(T2) ∨ ¬t(T3)
)
∧(

c(A,B, p, T1, n, T2, n, T3)→ t(T1) ∨ ¬t(T2) ∨ ¬t(T3)
)
∧(

c(A,B, n, T1, n, T2, n, T3)→ ¬t(T1) ∨ ¬t(T2) ∨ ¬t(T3)
) )

.
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Indeed, according to formula F , for each clause ck at least one literal among tk,1, tk,2, tk,3 must be true in the
considered truth value assignment.

Now, we are in a position to complete the reduction ∆FO(Φ). The set W (Φ) is given by

WΦ ∪ {l,¬φ, t(x1), . . . , t(xn)},

while DFO is the fixed set of defaults D1 ∪D2 ∪D3 ∪D4, where:

D1 =

{
e(A,C) ∧ t(A) : ok(A)

ok(A)
,
e(A,C) : ¬t(A)

¬t(A)
,
e(A,C) ∧ ¬φ : t(A)

t(A)
,
e(A,C) ∧ ¬t(A) : ok(A)

ok(A)

}
D2 =

{
: φ

φ
,
: ¬l
¬l

,
¬l : ¬φ
¬φ

}
D3 =

{
u(B,C) : t(B)

t(B)
,
u(B,C) : ¬t(B)

¬t(B)

}
D4 =

{
((∀A)(e(A,C)→ ok(A))) ∧ ¬F : ¬φ

¬φ

}
The reader can verify that the grounded version PROP(∆FO(Φ)), which is a finite propositional general default
theory, is equivalent to the default theory ∆(Φ) described in the hardness part of Theorem 4.1, Point 1. Hence, from
what is stated above, and from Theorem 4.1, the result follows. 2
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