
COPYRIGHT NOTICE

This is the author’s version of the work. The definitive version
was published in Annals of Mathematics and Artificial Intelligence

(AMAI), 60(3-4):179-228, December 2010.

The final publication is available at www.springerlink.com.

DOI: http://dx.doi.org/10.1007/s10472-010-9220-z.

i

http://dx.doi.org/10.1007/s10472-010-9220-z

Annals of Mathematics and Artificial Intelligence manuscript No.
(will be inserted by the editor)

Fabrizio Angiulli · Gianluigi Greco · Luigi Palopoli

Detecting and Repairing Anomalous
Evolutions in Noisy Environments
Logic Programming Formalization and Complexity
Results

Abstract In systems where agents are required to interact with a partially
known and dynamic world, sensors can be used to obtain knowledge about the
environment. However, sensors may be unreliable, that is, they may deliver
wrong information (due, e.g., to hardware or software malfunctioning) and,
consequently, they may cause agents to take wrong decisions, which is a
scenario that should be avoided.

The paper considers the problem of reasoning in noisy environments in
a setting where no (either certain or probabilistic) data is available in ad-
vance about the reliability of sensors. Therefore, assuming that each agent
is equipped with a background theory encoding its general knowledge about
the world, a concept of detecting an anomaly perceived in sensor data and
the related concept of agent recovering to a coherent status of information
are defined. In this context, the complexities of various anomaly detection
and anomaly recovery problems are studied. Finally, rewriting algorithms are
proposed that transform recovery problems into equivalent inference prob-
lems under answer set semantics, thereby making them effectively realizable
on top of available answer set solvers.

Keywords Logic Programming · Computational Complexity · Nonmono-
tonic Reasoning

Fabrizio Angiulli and Luigi Palopoli
DEIS, Università della Calabria, 87036 Rende, Italy, E-mail:
{angiulli,palopoli}@deis.unical.it
Gianluigi Greco
Dip. di Matematica, Università della Calabria, 87036 Rende, Italy, E-mail:
ggreco@mat.unical.it

2

1 Introduction

Consider an agent operating in a dynamic context according to an internal
background theory (the agent’s trustable knowledge) which is enriched, over
time, through sensing the environment. The agent acts on the environment
through operators, which generally cause the environment to evolve from one
state to the next one. To this aim, the agent exploits an internal image of the
environment (and its evolution over time) which is constructed on the basis
of its background theory and sensed information. Therefore, corresponding to
environment evolution is the agent’s perceived evolution of it. Were sensors
completely reliable, in a fully observable environment, the agent could gain
a perfectly correct perception of environment evolution. However, in general,
sensors might be unreliable, in that they may deliver erroneous observations
to the agent. Thus, the agent’s perception about environment evolution might
be erroneous and this, in turn, might cause wrong decisions are taken.

In order to deal with the uncertainty that arises from noisy sensors, prob-
abilistic approaches have been proposed (see, e.g., [9,14,15,54,60,69,55,10,
73,23,24]) where evolutions are represented by means of dynamic systems in
which transitions among possible states are determined in terms of probabil-
ity distributions. Other approaches refer to some logic formalization (see, e.g.,
modal logics, action languages, logic programming, and situation calculus [5,
74,39,72,44,42]) in which a logical theory is augmented to deal quantitatively
and/or qualitatively with reliability information about sensors.

In this paper we take a different perspective instead, by assuming that no
information (neither probabilistic nor qualitative) about reliability of sensors
is available in advance. Therefore, evidence for the failure of the sensors
can only be gained from singling out some form of discrepancy between the
observations sensed through them and the internal trustable knowledge of
the agent. This is precisely the approach proposed and investigated in the
paper, which is next briefly illustrated with the help of a running example.

1.1 Example of Faulty Sensors Identification

Assume that an agent is in charge of parking cars in a parking lot (see
Figure 1). The parking lot consists of two buildings, each with several floors.
The floors are reached via a single elevator which runs in the middle in
between the two buildings (so, there is a building to the left and one to the
right of the elevator door). A number of sensors are used to inform the agent
about parking place availability at different levels of the two buildings. In
particular, the sensors tell the agent:

(a) if there is any available parking place at some level in any of the two
buildings (sensor s1);

(b) given the floor where the agent is currently located, if there is any available
parking place in the left or the right building at that floor (sensor s2);

(c) given the floor and the building (left or right) where the agent is currently
located, whether parking places are available at that floor in that building
(sensor s3).

3

Fig. 1 Parking lot example.

Also, the agent uses a background theory that tells him that if he is at floor
i of the building x and sensors s1, when queried, signalled parking availability
at level i and sensor s2, when queried, signalled a parking availability in
building x, then there must be indeed at least one parking place available at
his current position.

Now, assume that the agent had actually queried sensor s1 that notified
parking availability at level 2, and sensor s2 that notified parking availability
in the left building. Assume, moreover, that the agent is at level 2, in the left
building. If sensor s3 returns the information that no place is available at the
current agent’s position, then a disagreement will emerge with the internal
state of the agent that tells that there should be indeed at least one place
available in that position. This disagreement implies that some anomalies
came into play.

In particular, the agent might doubt about the reliability of sensor s3
(that is, there actually are available parking places at the agent position, but
s3 tells that none is available). Similarly, the agent might also suspect that
sensor s1 is reliable while s2 is not; by this way, the output of s3 would come
at no surprise.

1.2 Contribution and Organization

By focusing on scenarios as the one discussed above, it is our aim to introduce
techniques that are able to automatically identify discrepancies between the
observations and the internal knowledge and that may suggest possible fixes
for them. In more detail, the contribution of the paper is as follows:

I We propose the concept of anomaly in state evolutions of a dynamic en-
vironment, as perceived by an agent sensing that environment through
(possibly) noisy sensors. The formalization is, to a large extent, inde-
pendent of the specific formalism used to encode the agent’s trustable
knowledge, but details are provided for agents whose reasoning capabili-
ties are modeled as extended logic programs, and where the description
of the planning domain is formalized via the AK action language [10,73,
74].

I In the case where a discrepancy is actually found, a suitable repair should
be computed. A contribution of the paper is to introduce a notion of
repair for an anomaly, i.e., of an evolution where sensed values are fixed

4

to comply with the trustable knowledge. Thus, by repairing an evolution
we simply mean to equip the agent with some novel possible perception
of the status of the world, where discrepancies between observations and
background knowledge are resolved.

I For the several detection and repair problem variants we have defined, we
develop a thorough study of the underlying computational complexities.
This is relevant since complexity results are quite useful for gaining knowl-
edge of the structure of the problems the framework comprises and, above
all, to be able to realize effective rewriting and optimizations needed to
implement them. The study considers different kinds of extended logic
programs used to encode the agent knowledge about the environment,
ranging from negation-by-default-free programs to general programs un-
der both the brave and the cautious semantics.

I We propose and analyze variants for the notion of repair where, for in-
stance, suitable minimality conditions are taken into account, in order
to express preferences on the way the revision of the evolution should
be carried out. In particular, this analysis is contextualized to the case
of negation-by-default-free programs, for which nice links between the
existence of anomalies and the emergence of incoherences in the agent’s
theory are established.

I Finally, having realized that the reasoning problems related to the iden-
tification and the repairing of an anomaly are confined within the second
level of the polynomial hierarchy (for the case of negation-by-default-free
programs) has paved the way towards the design of an implementation
based on rewritings in terms of disjunctive logic programs under the an-
swer set semantics. Details on the rewriting algorithms are also reported
and discussed.

The rest of the paper is organized as follows. Section 2 describes the main
complexity classes that will be referred to in the paper, and introduces some
preliminaries on the language AK and on logic programming. Section 3
presents the framework for detecting and repairing anomalies in evolutions.
The complexity analysis of the proposed setting is carried out throughout
Section 4 and Section 5. In particular, the latter section investigates a few
variants for the notion of repair, where some minimality conditions are pos-
sibly taken into account, and where the focus is on negation-by-default-free
logic programs. In Section 6, the rewriting approach is discussed to imple-
ment repair problems on top of answer set engines. Finally, some relevant
related works are discussed in Section 7, while some concluding remarks are
reported in Section 8.

2 Preliminaries

2.1 Computational Complexity

Some basic definitions about complexity theory are recalled next. The reader
is referred to [64,46] for more on this.

5

Decision problems are maps from strings (encoding the input instance
over a suitable alphabet) to the set {“yes”, “no”}. A (possibly nondetermin-
istic) Turing machine M answers a decision problem if on a given input x,
(i) M has a computation that halts in an accepting state iff x is a “yes”
instance, and (ii) all the computations of M halt in some rejecting state iff
x is a “no”instance.

The class P is the set of decision problems that can be answered by a
deterministic Turing machine in polynomial time. The class of decision prob-
lems that can be solved by a nondeterministic Turing machine in polynomial
time is denoted by NP, while the class of decision problems whose comple-
mentary problem is in NP, is denoted by co-NP.

The classes ΣP
k and ΠP

k , forming the polynomial hierarchy, are defined as

follows: ΣP
0 = ΠP

0 = P and for all k ≥ 1, ΣP
k = NPΣP

k−1 , ∆P
k = PΣP

k−1 , and
ΠP

k = co-ΣP
k where co-ΣP

k denotes the class of problems whose complemen-
tary version is in ΣP

k , and where ΣP
k (resp. ∆P

k) models computability by a
nondeterministic (resp. deterministic) polynomial-time Turing machine that
may use an oracle that is, loosely speaking, a subprogram, that can be run
with constant computational cost, for solving a problem in ΣP

k−1. Note that

ΣP
1 = NP and ΠP

1 = co-NP. The class DP
k , k ≥ 1, is the class of problems

defined as a conjunction of two independent problems, one from ΣP
k and one

from ΠP
k , respectively. Note that for all k ≥ 1, ΣP

k ⊆ DP
k ⊆ ΣP

k+1.
Functions (also computation problems) are (partial) maps from strings to

strings, which can be computed by suitable Turing machines, called trans-
ducers, which have an output tape. In particular, a transducer T computes
a string y on input x, if some branch of the computation of T on x halts in
an accepting state and, in that state, y is on the output tape of T . Thus, a
function f is computed by T , if (i) T computes y on input x iff f(x) = y, and
(ii) all the branches of T halt in some rejecting state iff f(x) is undefined.

In this paper, some classes of computation problems will be referred to
which are illustrated next (see, also, [50,70]). For each class of decision prob-
lems, say C, FC denotes its functional version; for instance, FNP denotes the
class of functions computed by nondeterministic transducers in polynomial
time, FΣP

2 denotes the class of functions computed in polynomial time by
nondeterministic transducers which use an NP oracle, and F∆P

2 denotes the
functions computed, in polynomial time, by a deterministic transducer which
uses an NP oracle. In particular, F∆P

2 [O(log n)] denotes the functions that
can be computed in polynomial time by a deterministic transducer making
logarithmically many calls (in the size n of the input) to an NP oracle.

In conclusion, the notion of reduction for decision and computation prob-
lems should be recalled. A decision problem A1 is polynomially reducible to
a decision problem A2 if there is a polynomial time computable function h
such that for every x, h(x) is defined and A1 outputs “yes” on input x iff A2

outputs “yes” on input h(x). A decision problem A is complete for the class C
of the polynomial hierarchy iff A belongs to C and every problem in C is poly-
nomially reducible to A. Moreover, a function f1 is reducible to a function f2
if there is a pair of polynomial-time computable functions h1, h2 such that
for every x, h1(x) is defined, and f1(x) = h2(x,w) where w = f2(h1(x)). A

6

function f is hard for a class of functions FC, if every f ′ ∈ F is polynomially
reducible to f , and is complete for FC, if it is hard for FC and belongs to FC.

2.2 The Action Language AK

Planning capabilities for the agent will be modelled in the paper by means of
the well-known action language AK [10,73,74], which has been obtained by
extending A [36] with suitable mechanisms for reasoning in the presence of
sensing actions. Below, we shall recall the main peculiarities of this language.

We assume the existence of two disjoint sets of propositional letters F
and A, denoting the fluents of interest in the modelling of the world and the
actions available to the agent, respectively. For any letter f ∈ F , a fluent
literal is either f itself or its negation denoted by ¬f . For a literal l, ¬ l
denotes the complementary literal; thus, for a letter f ∈ F , ¬(¬f) = f .
Moreover, for any set S of literals, we denote by S¬ the set {¬f | f ∈ S}.

Syntax. A description in AK consists of propositions of four kinds:

(1) A v-proposition is an expression of the form:

initially f

where f is a literal in F ∪ F¬. A v-proposition specifies the truth value
of a fluent in the initial situation.

(2) An ef-proposition is an expression of the form:

a causes f if p1, ..., pn

where a is an action in A and f, p1, ..., pn (n ≥ 0) are literals in F ∪F¬1.
An ef-proposition describes the effect of an action a on the truth value of
a fluent. The conjunction p1, ..., pn is the precondition of the proposition.

(3) A k-proposition is an expression of the form:

a determines f if q1, ..., qn

where a is an action in A and f, q1, ..., qn (n ≥ 0) are literals in F ∪ F¬.
A k-proposition describes that an action a has the effect of sensing the
truth value of a fluent f .

(4) An ex-proposition is an expression of the form:

executable a if l1, ..., ln

where a is an action in A and l1, ..., ln (n ≥ 0) are literals in F ∪F¬. An
ex-proposition states an executability condition for action a.

1 If n = 0 the symbol if is omitted, also for all the other kinds of propositions.

7

Two ef-propositions a causes f if p1, ..., pn and a causes ¬f if p′1, ..., p
′
m

are contradictory if {p1, ..., pn} ∩ {¬p′1, ...,¬p′m} = ∅. A domain description
D (over fluents F and actions A) is a set of propositions of the form above
that does not contain contradictory ef-propositions.

Semantics. There are many possible ways to assign semantics to a domain
description D. In fact, when one needs to capture the difference between what
is true in the world and what is known about the world, modalities and Kripke
models can be considered (e.g, [71]). In this paper, we shall resort instead to
approximations of this approach enjoying nicer computational properties [7].

In particular, we shall consider the semantics that has firstly been dis-
cussed in [10] based on the notion of 0-approximation.

In the 0-approximation semantics a state S for the agent is a set of fluent
literals that is coherent, i.e., such that S ∩ S¬ = ∅. The semantics assumes a
three-valued interpretation of the world, i.e., S may possibly be incomplete.
Thus, a literal f is true in S if f ∈ S; f is false in S if ¬f ∈ S; and, f is
unknown in S if neither f nor ¬f belongs to S.

The initial state S0 consists of all fluent literals f for which the proposition
initiallyf occurs in D. Then, the domain description D specifies how the
agent perception of the environment may evolve as a consequence of executing
actions. Thus, the core of the semantics consists in specifying a transition
function Φa for each action a, mapping each state S to the sets of states that
are reachable from S when applying a.

An action a is executable in S if there is an ex-proposition
executable a if l1, ..., ln and {l1, ..., ln} ⊆ S. Then, for a given state S,
and for an action a executable in S:

• Let ea(S) be the set containing each literal f such that

a causes f if p1, ..., pn

occurs in the domain description and {p1, ..., pn} ⊆ S (we say that the
precondition is true in S).
• Let Fa(S) be the set containing each literal f such that

a causes f if p1, ..., pn

occurs in the domain description and {¬p1, ...,¬pn}∩S = ∅ (we say that
the precondition is possibly true in S).
• Let Ka(S) be the set containing each fluent f such that

a determines f if q1, ..., qn

occurs in the domain description and {q1, ..., qn} ⊆ S.

W.l.o.g., we assume that actions in A are partitioned into sensing actions
(not involved in ef-propositions) and non-sensing ones (not involved in k-
propositions). Then:

– For a non-sensing action a, Φa(S) is a singleton set {S′} where S′ contains
all the fluent literals that either are effects of some ef-proposition caused
by a and whose precondition is true in S, or are in S and their opposite is

8

not entailed by some ef-proposition caused by a and whose precondition
is possibly true in S. Formally:

Φa(S) = {S ∪ ea(S) \ Fa(S)
¬} (1)

– For a sensing action a, Φa(S) is instead the set of all the possible states
each of which is obtained by adding to S the fluent literals that can be
true or false as a result of the sensing. Formally,

Φa(S) = {S ∪ v | v ⊆ Ka(S) ∪Ka(S)
¬ and S ∪ v is coherent} (2)

A more formal treatment for the 0-approximation semantics can be found
in [10,73,7,74], where the reader is also referred to for examples and fur-
ther discussions. In particular, we omit from here discussing actual planning
mechanisms, since in monitoring frameworks such as ours, the focus is on
reasoning on top of plans that are assumed to have already been executed.

2.3 Extended Logic Programs

Throughout the paper we will assume that agents’ internal trustable knowl-
edge is modeled by means of propositional Extended Logic Programs (short:
ELPs). We briefly recall that a propositional ELP is a set of rules of the form

L0 ← L1, . . . , Lm, not Lm+1, . . . , not Ln.

where n ≥ m ≥ 0, the symbol “not” denotes negation by default, and each Li

is a literal, i.e. an expression of the form p or ¬p with p being a propositional
letter and the symbol “¬” denoting classical negation. By h(r) we denote the
head L0 of the rule r, and by b(r) its body L1, . . . , Lm, not Lm+1, . . . , not Ln.
An ELP is positive if classical negation does not occur in the program.

In the following, we consider the answer set semantics for ELPs [35].
Answer sets of an ELP P are defined as follows.

Let U(P) denote the set of all the literals obtained using the propositional
letters occurring in P . Let a context be any subset of U(P).

Let P be a negation-by-default-free ELP. Call a context S closed under P
iff for each rule L0 ← L1, . . . , Lm in P , if L1, . . . , Lm ∈ S, then L0 ∈ S. An
answer set of P is any minimal context S such that (1) S is closed under P
and (2) if S is incoherent, that is, if there exists a propositional letter p such
that both p ∈ S and ¬p ∈ S, then S = U(P).

An answer set of a general ELP is defined as follows. Let the reduct of P
w.r.t the context S, denoted by Red(P, S), be the ELP obtained from P by
deleting (i) each rule that has not L in its body for some L ∈ S, and (ii)
all subformulae of the form not L of the bodies of the remaining rules. Any
context S which is an answer set of Red(P, S) is an answer set of P .

By ANSW(P) we denote the collection of all the answer sets of an ELP P .
An ELP P is inconsistent iff ANSW(P) = ∅. An ELP P is incoherent iff it
has a unique answer set that is incoherent.

An ELP P cautiously entails a literal l, written P |=c l, iff for each
S ∈ ANSW(P), l ∈ S. An ELP P bravely entails a literal l, written P |=b l,

9

iff there exists S ∈ ANSW(P) such that l ∈ S. Whenever the specific form
of entailment is not relevant, we shall simply write P |= l.

We conclude by recalling some well-known complexity results pertaining
extended logic programs.

A negation-by-default-free ELP has one and only one answer set. Comput-
ing the answer set of a negation-by-default-free ELP is a P-complete problem.
Moreover, for this class of ELPs there is no difference between the brave and
the cautious semantics, and deciding whether a negation-by-default-free ELP
entails a literal is a P-complete problem.

Given a context S and an ELP P , deciding whether S ∈ ANSW(P) can be
done in polynomial time by computing Red(P, S) and then checking whether
S is the unique answer set of the negation-by-default-free ELP Red(P, S).

Finally, we recall that deciding whether an ELP bravely entails a literal is
an NP-complete problem, while deciding whether an ELP cautiously entails
a literal is a co-NP-complete problem.

3 Formal Framework

In this section, we formally define the problem of reasoning about possibly
faulty sensors. In particular, we present some techniques that an agent might
exploit to identify “anomalous” observations (and, hence, faulty sensors), and
a “repair approach” in execution monitoring accommodating the uncertainty
on the outcome of the sensors.

In fact, all these techniques will be accommodated in a framework where
an agent A is represented as a tuple 〈F ,S,D,K〉 such that F denotes the set
of propositional letters used to describe the state of the world; S is a set of
available sensors; D is a domain description that is meant to characterize the
set of possible state evolutions determined by the applications of actions; and,
K denotes the internal background knowledge A may use to reason about the
current state of the world. Thus, we start the exposition by providing details
on each of the components above.

3.1 States and Sensors (F and S)

The first ingredient in the agent formalization is a set F of propositional
letters that are meant to denote the fluents of interest in the modelling of
the world. For notational convenience (given our interest w.r.t. those fluents
that can be sensed), we shall assume that F is partitioned into two (disjoint)
sets of letters:

(i) beliefs B, denoting the agent beliefs about the status of the world;
(ii) observables O, modeling the status of the world as returned by a set
S of environment sensors. In more detail, for each sensor s ∈ S, λ(s) ⊆
O denotes the set of propositional letters that are sensed by s, where
λ(s1)∩λ(s2) = ∅ for each pair of sensors s1 and s2 in S—thus, we assume
that any observable can be sensed by one sensor at most.

10

B :

{
floor0, f loor1, f loor2
buildingl, buildingr

O :

{
availF0, availF1, availF2

availBl, availBr

availP lace

S :

{
λ(s1) = {availF0, availF1, availF2}
λ(s2) = {availBl, availBr}
λ(s3) = {availP lace}

K :

{
availP lace← availFi, availBx,

f loori, buildingx.

Fig. 2 Formalization of the parking lot example.

Example 1 In the parking lot application, fluents are associated with the
existence of parking places available at a certain level and building of the
parking lot as well as with the current location of the car to be parked.

Accordingly, the sensors S, the observables O and the beliefs B are re-
ported in Figure 2, where, for instance, availF1 means that there are parking
places available at level 1, availBl that at the current floor there are places
available in the left building, and buildingr that the car is currently in the
building on the right. �

In order to help distinguishing beliefs from observables in a given state S,
we shall represent S as a pair of sets 〈S ∩ (B∪B¬), S ∩ (O∪O¬)〉. Moreover,
S ∩ (B ∪ B¬) (resp. S ∩ (O ∪O¬)) will be denoted by B(S) (resp. O(S)).

Recalling that we exploit a 3-valued interpretation of the domain (cf.
Section 2.2), l ∈ B(S) (resp., l ∈ O(S)) means that l is known to be true in
S; ¬ l ∈ B(S) (resp., ¬ l ∈ O(S)), where l is a letter, means that l is known
to be false in S; and, l ∈ F such that neither l nor ¬ l belongs to B(S) (resp.
O(S)) means that l is unknown in S.

3.2 Transitions and Evolutions (D)

An agent A operating in the environment (modeled over F) has to be
equipped with some mechanisms for executing actions that cause transitions
between states. In this respect, we note that several ways to define transi-
tions between states in the presence of sensing actions have been proposed in
the literature, accounting, e.g., for non-deterministic effects, causal effects,
probabilities, and so on (see, e.g., [44,54,73,74] and references therein).

In fact, the concept of anomaly in state evolution is completely orthogonal
with respect to the specific approach being adopted. Hence, in principle, it
would just suffice to assume that a set of actions is given together with a
function Φa, for each action a, mapping A’s current state into the set of
states that A may reach when applying a. For the sake of concreteness, we
shall contextualize our proposal to the case of the language AK and its 0-
approximation semantics.

11

Example 2 Consider again the parking lot example. Then, the actions of
sensing s1, s2, and s3 can be represented via the following k-propositions:

s1 determines availF0

s1 determines availF1

s1 determines availF2

executable s1 if floor0
s2 determines availBl

s2 determines availBr

s3 determines availP lace

where action names coincide with the name of the sensors—action names
will coincide with sensor names also in the following.

Moreover, besides sensing, the agent may act in the environment through
the actions movei,j and enterx, where indexes i, j and x are used as place-
holders of actual indexes 0, 1, 2 and l, r, respectively. In particular, movements
of the agent can be formalized via the following ef-propositions:

movei,j causes ¬floori if floori
movei,j causes floorj if floori
enterx causes buildingx

Intuitively, movei,j determines moving from floor i to floor j, while enterx
determines entering into the building x. �

The repeated application of actions defines an evolution for the agent,
which can be seen as an actual plan that the agent is executing in order
to achieve a given goal starting from the initial state 〈S0

B , S
0
O〉. In this pa-

per, we are not interested in investigating on suitable planning mechanisms
for the agent. Rather, we are interested in analyzing how reasoning mecha-
nisms applied on the events registered during an evolution can possibly lead
to singling out malfunctioning of the sensors. Thus, we consider a monitor-
ing perspective (e.g., [61,38,31,33,25]) focused on the identification of noisy
sensors.

As in classical monitoring frameworks, we assume that the various actions
performed by the agent (and their consequences on the state of the world)
are registered and available for analysis purposes.

Formally, for a state 〈SB , SO〉 and an action a, let us denote by
〈SB , SO〉 →a 〈S′B , S′O〉 the fact that the application of a on 〈SB , SO〉 led
the agent to the state 〈S′B , S′O〉 ∈ Φa(〈SB , SO〉). In fact, note that since we
assume a 3-valued interpretation over states, 〈S′B , S′O〉 may not completely
specify the truth value for all the possible fluents in F . Thus, in general
〈S′B , S′O〉 succinctly represents a set of alternatives on the actual world, rather
than a concrete one. Moreover, note that since we are considering the case of
the 0-approximation semantics, if a is a non-sensing action, then 〈S′B , S′O〉 is
univocally determined by 〈SB , SO〉 and a (cf. Equation (1)). To the contrary,
if a is a sensing action, then 〈S′B , S′O〉 precisely stores the values that have
been sensed by the agent in the transition (cf. Equation (2)).

12

Definition 1 (Evolution) An evolution H for A is a succession of states
of the form:

〈S0
B , S

0
O〉 →a1 〈S1

B , S
1
O〉 →a2 ...→an 〈Sn

B , S
n
O〉,

where:

(i) 〈S0
B , S

0
O〉 satisfies all the v-propositions of A’s domain description;

(ii) ai is executable in 〈Si
B , S

i
O〉 for each 1 ≤ i ≤ n; and,

(iii) 〈Si
B , S

i
O〉 ∈ Φai(〈Si−1

B , Si−1
O 〉), for each 1 ≤ i ≤ n. 2

Note that the final state of an evolution not involving sensing actions is
univocally determined by the actions on which it is defined. Moreover, an
evolution possibly involving sensing actions precisely reports the values that
have been sensed. Thus, provided the knowledge about these values and the
initial state, the final state is again univocally determined.

In our framework, we assume that all the values sensed by the agent
during the evolution are registered, so that the actual evolutionH is available
and constitutes the basis for identifying noisy sensors.

Example 3 Consider again the domain description discussed in Example 2,
and enrich it with the proposition:

initially floor0

Consider, now, the evolution H consisting of the following five actions:
a1 : s1; a2 : move0,2; a3 : s2; a4 : enterl; and a5 : s3, and where sensed
values in H are such that O(state1(H)) ⊇ {¬availF0, ¬availF1, availF2},
O(state3(H)) ⊇ {availBl,¬availBr}, and O(state5(H)) ⊇ {¬availP lace}.

An illustration for this evolution is reported in Figure 1, which formally
is as follows:

〈{floor0}, {}〉 →s1
〈{floor0}, {¬availF0, ¬availF1, availF2}〉 →move02

〈{floor2}, {¬availF0,¬availF1, availF2}〉 →s2
〈{floor2}, {¬availF0,¬availF1, availF2, availBl,¬availBr}〉 →enterl
〈{floor2, buildingl}, {¬availF0,¬availF1, availF2, availBl,¬availBr}〉 →s3

〈{floor2, buildingl}, {¬availF0,¬availF1, availF2, availBl,¬availBr,¬availP lace}〉

Intuitively, the agent starts in H from the state 〈{floor0}, ∅〉 and senses
s1 (which checks for a parking place on the various floors).

Based on the outcome of the sensing, he then plans to park at the second
floor, and eventually after sensing s2 he enters into the left building, and
checks for the actual parking there. �

In the following, len(H) denotes the number of transitions occurring in
the evolution H; statei(H) denotes the ith state of the evolution H; state(H)
denotes statelen(H)(H); acti(H) denotes the ith action performed in the evo-
lution;H[i] denotes the evolution state0(H)→act1(H) . . .→acti(H) statei(H).

13

3.3 Anomalies and Repairs (K)

The last ingredient of the agent formalization is the internal background
knowledge K that allows him to reason about the current state of the world.
As discussed in Section 2.3, K is assumed to be formalized as an extended
logic program (over the alphabet of F).

Note that, in principle, we may use K to entail the truth value of some
fluents that are possibly unknown in the given state, thereby affecting the
definition of transition functions. This is, for instance, the approach pursued
in [75], where K is enriched with static causal laws. In fact, this is not our
focus and we shall use K under a different perspective.

Indeed, the agent background theory will be used as a sort of repository
of integrity constraints expressed over the values returned from the sensors.
Therefore, this theory allows the agent, at each step, to check whether some
anomalous situations occur, i.e., whether a discrepancy between the trustable
knowledge and the result of sensing emerges. It is worthwhile noticing that
this perspective has received less attention in the context of monitoring
frameworks, even though it has deeply been investigated in related fields
such as belief revision, inconsistency management, and diagnosis, just to cite
a few (see Section 7, for an overview of related approaches). A formaliza-
tion of the concept of “disagreement” specifically tailored for dealing with
evolutions in noisy environments is discussed below.

Definition 2 (Anomaly) Let H be an evolution for an agent A with in-
ternal knowledge K. A set of observations W ⊆ O(state(H)) is an anomaly
for A in H if:

∃w ∈W, such that th(A,H) \W |= ¬w,

where th(A,H) denotes the theory K ∪ B(state(H)) ∪ O(state(H)). 2

Intuitively, in the definition above, anomalies are characterized as those
observations whose removal from the current perception of the environment
allows to entail precisely the opposite of one of them. This is an evidence of a
disagreement between the trustable knowledge and the observations gained
from the sensors, even though a classical incoherence need not to necessarily
occur.

Example 4 Consider the evolutionH in Example 3 and the knowledge base K
that is reported in Figure 2. Basically, K tells the agent that if he is at floor i
of the building j and sensors s1, when queried, signalled parking availability
at level i and sensor s2, when queried, signalled a parking availability in
building j, then there must be indeed at least one parking place available at
his current position.

However, according to H, the agent is planning to park at the second
floor in the left building after sensing s1 and s2. But, the result of sensing
s3 is anomalous, as it disagrees with its beliefs (in K) according to which
availP lace should be true there. �

14

Given an anomaly, we are interested in finding possible fixes for it, i.e.,
“alternative” evolutions defined over the same set of transitions in which,
however, the result of the sensing actions may differ from the evolution in
which the anomaly has been singled out. In other words, by fixing an evo-
lution, the agent modifies (its perception of) the values returned by some
sensors which are, therefore, implicitly regarded as faulty, when such sensors’
values causes anomalies to occur in the evolution at hand. This is formalized
next with the notion of repair for an evolution.

Definition 3 (Repair) An evolution H ′ for A is a repair for H w.r.t. an
anomaly W if:

(1) len(H) = len(H ′),
(2) state0(H) = state0(H

′),
(3) acti(H) = acti(H

′), for each 1 ≤ i ≤ len(H), and
(4) ∀w ∈W ∩ O(state(H ′)), th(A,H ′) \W 6|= ¬w. 2

Note that, differently from classical goal-oriented monitoring approaches,
our notion of repair does not consist in undoing some of the actions performed
so far. Rather, by repairing an evolutionH, we just mean equipping the agent
with the capability of constructing an alternative perception of the world that
is consistent with all the actions performed from the given initial state (cf.
conditions (1), (2), and (3) in Definition 3) and that resolves the conflict with
the anomaly W (cf. condition (4) in Definition 3).

Moreover, we note that a repair H ′ may be defined by just modifying the
values sensed by sensing actions, since non-sensing actions play determinis-
tically on the given states. Thus, by repairing an evolution, we basically aim
at determining values for the sensors that will eliminate the discrepancy with
agent background knowledge. This is further illustrated below.

Example 5 A repair for our running example is obtained by replacing the
value returned by sensor s2 with {¬availBl, availBr} while keeping the val-
ues returned by s1 and s3. This represents the scenario in which the available
place is in the opposite building of the same floor, and in which the output
of s3 is no longer perceived as anomalous. �

4 Reasoning with Noisy Sensors: General Results

Now that we have defined the formal framework for anomaly detection and re-
pairing of an agent’s belief state evolution, we turn to the problem of defining
relevant agent’s reasoning tasks. Moreover, as already stated in the Introduc-
tion, it is important to pinpoint the computational complexity characterizing
such tasks, since this is an important premise towards devising effective and
optimized implementations of the framework.

Specifically, in this section we consider the basic notions of anomaly and
repair, and the following relevant problems:

Anomaly-Existence: Given an agent A and an evolution H for A, is there
any anomaly W for A in H?

15

Repair-Existence: Given an agent A and an anomaly W for A in an evo-
lution H, does there exist a repair H ′ for H w.r.t. W?

Anomaly&Repair-Checking: Let A be an agent and H an evolution.
Given an evolution H ′ and a set of observables W ⊆ O(state(H)), is
W an anomaly for A in H, and H ′ a repair for H w.r.t. W?

Other problems related to the notion of “full repair” and to variants where
minimality conditions are taken into account are investigated in Section 5.

not -free cautious brave

Anomaly-Existence P-c ΣP
2 -c NP-c

Repair-Existence NP-c NP-c ΣP
2 -c

Anomaly&Repair-Checking P-c in ∆P
2 DP-c

Fig. 3 Complexity of Basic Problems.

Overview of the Results. Complexity results concerning the problems defined
above are depicted in Figure 3, where analysis is conducted for the setting
of negation-by-default-free (short: not-free) knowledge bases as well as for
general knowledge bases under both the brave and the cautious semantics.

It turns out that all the problems for not-free programs are confined
within the first level of the polynomial hierarchy and, in particular, that
Anomaly-Existence and Anomaly&Repair-Checking are efficiently
solvable, while Repair-Existence appears intrinsically more complex.

Dealing with general knowledge bases leads, instead, to an increase in
complexity but with some subtle differences between brave and cautious se-
mantics. Indeed, while with most reasoning tasks swapping from brave to cau-
tious semantics moves the complexity to complementary classes, in our case
seemingly unrelated results are obtained. In particular, Repair-Existence
is more difficult under brave reasoning, while Anomaly-Existence is more
difficult under the cautious semantics.

While at a first glance these results may seem counter-intuitive, they can
be readily understood by taking a closer look to the two main conditions to
be checked while deciding for the aforementioned problems. These conditions
appear to be, loosely speaking, specular to each other. As a matter of fact,
checking for anomaly existence (see Definition 2) amounts to verify whether
there exists a set of observations W and an observation w in W such that the
theory th(A,H) \W entails the literal ¬w. To the contrary, checking for the
existence of a repair (see Definition 3) amounts basically to check whether
for each observation w occurring both in the anomaly W and in the current
agent state, the theory th(A,H ′) \ W does not entail the literal ¬w. The
dual behavior of the two investigated semantics for the entailment operator,
which are the cautious and brave one, then completes the picture, explaining
why complexity results for Anomaly-Existence and Repair-Existence
are mirrored when switching from the brave to the cautious semantics and
vice-versa, and also why, within the same problem, there is a gap between the
levels of the polynomial hierarchy associated with complexity results under
cautious and brave semantics. The reader is referred to the proofs reported
next for the formal details.

16

4.1 Proofs of Complexity Results

Next we present details on the results depicted in Figure 3. To this end, we
find it useful to introduce some additional notations and definitions that will
be used throughout the proofs.

Let L be a coherent set of literals. We denote with TL the truth assignment
on the set of letters occurring in L such that, for each positive literal p ∈ L,
TL(p) = true, and for each negative literal ¬p ∈ L, TL(p) = false.

Let L be a set of literals. Then we denote with L+ the set of positive
literals occurring in L, and with L− the set of negative literals in L.

Let T be a truth assignment of the set {x1, . . . , xn} of boolean variables.
Then we denote with Lit(T) the set of literals {`1, . . . , `n}, such that `i is xi

if T (xi) = true and is ¬xi if T (xi) = false, for i = 1, . . . , n.
In the following, we will denote by

Φ: the boolean formula Φ = C1 ∧ . . .∧Cm in conjunctive normal form, with
Cj = tj,1 ∨ tj,2 ∨ tj,3, where each of tj,1, tj,2 and tj,3 is a literal on the set
of boolean variables X = x1, . . . , xn;

Ψ : the quantified boolean formula Ψ = ∃X∀Y f(X,Y), where X =
x1, . . . , xn, Y = y1, . . . , ym, f(X,Y) = D1 ∨ . . . ∨ Dl is in conjunctive
normal form, with Dk = tk,1 ∧ tk,2 ∧ tk,3, and each of tk,1, tk,2, tk,3 is a
literal on the set of boolean variables X and Y .

Armed with these notations, we can now start our investigation by dis-
cussing the complexity of the Anomaly-Existence problem.

Theorem 1 Anomaly-Existence is

(1) P-complete, for negation-by-default-free ELPs,
(2) NP-complete, for general ELPs under brave semantics, and
(3) ΣP

2 -complete, for general ELPs under the cautious semantics.

Proof

(1) (Membership) First of all, we recall that for negation-by-default-free
ELPs the monotonicity property holds, that is: if P |= w then, for any
ELP P ′ such that P ′ ⊇ P , P ′ |= w. Furthermore, we recall that given a
negation-by-default-free ELP P and a literal w, deciding whether P |= w
is a P-complete problem, hence solvable in polynomial time.
Now we prove that there exists an anomaly W for A in H iff there exists
an observable w ∈ O(state(H)) such that {w} is an anomaly for A in H.
Let W be an anomaly for A in H. Then there exists a literal w ∈W such
that th(A,H) \W |= ¬w, and, from the monotonicity property, it follows
that th(A,H) \ {w} |= ¬w. We can conclude that {w} is an anomaly for
A in H. The reverse direction is immediately verified.
Thus, it can be decided whether there exists an anomaly W in H for A as
follows. For each literal w ∈ O(state(H)), check whether th(A,H)\{w} |=
¬w. If at least one of these checks holds true, then return ”yes”, other-
wise return ”no”. The overall procedure can be accomplished in polyno-
mial time, since the number |O(state(H))| of observables sensed in H

17

is polynomially related to the size of H, while each entailment check is
polynomial time solvable.

(Hardness) Given a positive logic program P and a propositional letter
w, consider the agent A(P,w) with the set of observables O = {w}, the
knowledge base P , the sensor s(P,w) and the domain description:

s(P,w) determines w

Also, consider the evolution:

H(P,w) = 〈∅, ∅〉 →s(P,w) 〈∅, {¬w}〉.

As already recalled above, given a negation-by-default-free ELP P and
a literal w, deciding whether P |= w is a P-complete problem. In order
to complete the proof, now we prove that there exists an anomaly for
A(P,w) in H(P,w) iff P |= w.

(⇒) Assume that there exists an anomaly W for A(P,w) in H(P,w).
Then W ⊆ O(state(H(P,w))) = {¬w}. Since W cannot be empty, it
is the case that W is the set {¬w}. Thus, by definition of anomaly,
it holds that th(A(P,w),H(P,w)) \ {¬w} |= w. The result follows by
noticing that th(A(P,w),H(P,w))\{¬w} = (P ∪∅∪{¬w})\{¬w} =
P , and, consequently, that P |= w.

(⇐) Assume that P |= w. Then W = {¬w} is an anomaly for A(P,w) in
H(P,w). Indeed, th(A(P,w),H(P,w))\{¬w} = P , and, consequently,
th(A(P,w),H(P,w)) \ {¬w} |= w.

(2) (Membership) The problem can be solved by a polynomial time nondeter-
ministic Turing machine that guesses a subset W ⊆ O(state(H)) together
with a literal w ∈W and a context S such that ¬w ∈ S, and then checks,
in polynomial time, that S is an answer set of Red(th(A,H) \W,S) and,
hence, of th(A,H) \W .

(Hardness) Given the boolean formula Φ, consider the agent A(Φ) with
the set of observables O(Φ) = {x0, x1, . . . , xn} (where x0 is a new variable
not occurring in Φ), the sensor s(Φ), the knowledge base K(Φ):

r0 : sat← c1, . . . , cm.
r1,j : cj ← γ(tj,1). (1 ≤ j ≤ m)
r2,j : cj ← γ(tj,2). (1 ≤ j ≤ m)
r3,j : cj ← γ(tj,3). (1 ≤ j ≤ m)
r4,i : ¬xi ← not xi, sat. (0 ≤ i ≤ n)

where γ(xi) = xi and γ(¬xi) = not xi, and the domain description:

s(Φ) determines xi (0 ≤ i ≤ n)

Consider the evolution:

H(Φ) = 〈∅, ∅〉 →s(Φ) 〈∅,O(Φ)〉.

We prove that there exists an anomaly W for A(Φ) in H(Φ) iff Φ is
satisfiable.

18

(⇒) Assume that there exists an anomaly W ⊆ O(Φ) for A(Φ) in H(Φ).
Then there exists xi ∈ W such that th(A(Φ),H(Φ)) \ W |=b ¬xi.
As the negation of xi can be implied only by rule r4,i, then it is
the case that there exists an answer set SΦ of th(A(Φ),H(Φ)) \ W
such that sat ∈ SΦ. Since sat ∈ SΦ, by rule r0 it follows that, for
each 1 ≤ j ≤ m, it holds cj ∈ SΦ. But, cj ∈ SΦ if and only if
T Φ = T(X\W)∪(W\{x0})¬ is a truth assignment to the variables of Φ
that makes the clause Cj true (see rules r1,j , r2,j , and r3,j). It can be
eventually concluded that the truth assignment T Φ makes the formula
C1 ∧ . . . ∧ Cm true, or, equivalently, that Φ is satisfiable.

(⇐) Assume that Φ is satisfiable, and let T Φ be a truth value assignment
to the variables in X that makes Φ true. Then W = {x0} ∪ {xi |
T Φ(xi) = false} is an anomaly for A(Φ) in H(Φ). Indeed, the context
SΦ = {sat, c1, . . . , cm}∪(X \W)∪W¬ is an answer set of the program
th(A(Φ),H(Φ))\W—in this respect, it is worth observing that rule r4i
prevents possible incoherences in the theory. Then, the result follows
since ¬x0 ∈ SΦ, by construction.

(3) (Membership) The problem can be solved by a polynomial time non-
deterministic Turing machine with an NP oracle that guesses a subset
W ⊆ O(state(H)) and an observable w ∈ W , and then decides whether
th(A,H) \W |=c ¬w by calling the NP oracle (co-NP check).

(Hardness) Given the formula Ψ , consider the agent A(Ψ) with the set
of observables O(Ψ) = {x0, x1, . . . , xn} (where x0 is a new variable not
occurring in Ψ), the sensor s(Ψ), the knowledge base K(Ψ):

r0 : sat← δ(tk,1), δ(tk,2), δ(tk,3). (1 ≤ k ≤ l)
r1,j : yj ← not ¬yj . (1 ≤ j ≤ m)
r2,j : ¬yj ← not yj . (1 ≤ j ≤ m)
r3,i : ¬xi ← not xi, sat. (0 ≤ i ≤ n)

where δ(xi) = xi, δ(¬xi) = not xi, δ(yj) = yj , and δ(¬yj) = ¬yj , and the
domain description:

s(Ψ) determines xi (0 ≤ i ≤ n)

Consider also the evolution:

H(Ψ) = 〈∅, ∅〉 →s(Ψ) 〈∅,O(Ψ)〉.

Now we prove that there exists an anomaly W ⊆ O(Ψ) for A(Ψ) in H(Ψ)
iff Ψ is satisfiable.

(⇐) First of all, it must be noticed that, for each W ⊆ O(Ψ) the ELP
th(A(Ψ),H(Ψ))\W is consistent. In particular, there exists a bijection
between the truth value assignments T Y to the set of variables Y and
the answer sets of th(A(Ψ),H(Ψ)) \W . Indeed, for each assignment
T Y , either the set (X \W) ∪ Lit(T Y) or the set (X \W) ∪W¬ ∪
{sat}∪Lit(T Y) is an answer set of th(A(Ψ),H(Ψ))\W . Say ST

Y

the
answer set associated with T Y .
Assume that there exists an anomaly W for A(Ψ) in H(Ψ). Then there

19

exists xi ∈ W such that th(A(Ψ),H(Ψ)) \W |=c ¬xi. As ¬xi can be
implied only by rule r3,i, then it is the case that, for each answer set
S of th(A(Ψ),H(Ψ)) \ W , the literal sat is in S and, consequently,
that the set (X \W) ∪W¬ is contained in S. Hence, it follows from
what we have noticed above that, for each truth value assignment T Y

to the set of variables Y , there exists one and only one answer set

ST
Y

of th(A(Ψ),H(Ψ)) \W , and viceversa, and ST
Y

is of the form

(X \W) ∪W¬ ∪ {sat} ∪ Lit(T Y). Since, for each T Y , sat ∈ ST
Y

, by
rule r0 it can be concluded that W encodes a truth value assignment,
that is T(X\W)∪(W\{x0})¬ , to the set of variables X such that, for

each truth value assignment T Y to the set of variables Y , the formula
f(X,Y) holds true, i.e. that Ψ is satisfiable.

(⇐) Assume that Ψ is satisfiable. Then there exists a truth value as-
signment T X to the variables X that makes Φ true. Then W =
{x0} ∪ {xi | T Ψ (xi) = false} is an anomaly for A(Ψ) in H(Ψ). In-
deed, for each truth value assignment T Y to the set of variables Y ,

the context ST
Y

= (X \W) ∪W¬ ∪ {sat} ∪ Lit(T Y) is an answer

set of the program th(A(Φ),H(Φ)) \W , and ¬x0 ∈ ST
Y

. As there is
no other answer set for th(A(Ψ),H(Ψ)) \W , it can be concluded that
th(A(Ψ),H(Ψ)) |=c ¬w0, and W is an anomaly for H(Ψ) in A(Ψ). 2

Next, we turn to the investigation of the Repair-Existence problem.

Theorem 2 Repair-Existence is

(1) NP-complete, for negation-by-default-free ELPs,
(2) ΣP

2 -complete, for general ELPs under the brave semantics, and
(3) NP-complete, for general ELPs under the cautious semantics.

Proof

(1) (Membership) The problem can be solved by a polynomial time nonde-
terministic Turing machine that guesses a succession of states H ′, and
then checks that H ′ is an evolution and that H ′ is a repair. These checks
(for conditions in Definition 1 and Definition 3) are feasible in polyno-
mial time. In particular, since the unique answer set of a negation-by-
default-free ELP can be computed in polynomial time, condition (4) in
Definition 3 can be checked in polynomial time.

(Hardness) Given the formula Φ, consider the agent A(Φ) with the set of
observables O(Φ) = {unsat, w, x1, . . . , xn}, the sensors s1(Φ) and s2(Φ),
the knowledge base K(Φ):

r0 : ¬unsat.
r1,j : unsat← ¬tj,1,¬tj,2,¬tj,3. (1 ≤ j ≤ m)

and the domain description:

s1(Φ) determines w
s2(Φ) determines xi (1 ≤ i ≤ n)
s2(Φ) determines unsat
executable s2(Φ) if w

20

Consider the evolution:

H(Φ) = 〈∅, ∅〉 →s1(Φ) 〈∅, {w}〉 →s2(Φ) 〈∅, {unsat, w, x1, . . . , xn}〉

and the anomaly W = {w}. The set W = {w} is an anomaly since,
being both unsat and ¬unsat in th(A(Φ),H(Φ)), the unique answer set
of the negation-by-default-free program th(A(Φ), H(Φ)) \ {w} is SH =
O(Φ) ∪ O(Φ)¬, and ¬w ∈ SH .
Now we prove that there exists a repair H ′(Φ) for H(Φ) w.r.t. W iff Φ is
satisfiable.

(⇒) Assume that there exists a repair H ′(Φ) for H(Φ) w.r.t. W = {w}.
First of all, it must be noticed that the value sensed by sensor s1(Φ)
in the evolution H ′(Φ) is {w}, for otherwise the action s2(Φ) is not
executable in state(H ′[1]).
Then, in order to be the case that th(A(Φ),H ′(Φ)) \ {w} 6|= ¬w, the
program th(A(Φ), H ′(Φ)) \ {w} must be coherent and, by rule r0, the
value for the observable unsat in the evolution H ′(Φ) must be ¬unsat.
Since unsat can now be derived only by rules r1,j , it is the case that the
value for the observables x1, . . . , xn in the evolution H ′(Φ) represents
a truth value assignment to the variables x1, . . . , xn that makes the
formula Φ true.

(⇐) Assume that Φ is satisfiable, and let T X be a truth value assignment
to the variables x1, . . . , xn that makes Φ true. Then

H ′(Φ) = 〈∅, ∅〉 →s1(Φ) 〈∅, {w}〉 →s2(Φ) 〈∅, {¬unsat, w} ∪ Lit(T X)〉

is a repair for H(Φ) w.r.t. W . Indeed, since T X makes Φ true, the
body of rules r1,j is false. Consequently, the unique answer set of
th(A(Φ),H ′(Φ))\{w} is {¬unsat, w}∪Lit(T X), and th(A(Φ), H ′(Φ))\
{w} 6|= ¬w.

(2) (Membership) The problem can be solved by a polynomial time nonde-
terministic Turing machine with an NP oracle. The machine guesses a
succession of states H ′, and then checks that H ′ is an evolution and that
H ′ is a repair. All the checks for conditions in Definition 1 and Definition 3
are feasible in polynomial time, except for condition (4) in Definition 3.
Indeed, to verify that th(A,H ′) \W 6|=b ¬w, ∀w ∈W ∩O(state(H ′)), we
may check in non-deterministic polynomial time the complementary con-
dition, i.e., the existence of a letter w and an answer set S for th(A,H ′)\W
such that ¬w ∈ S.

(Hardness) Given the formula Ψ , consider the agent A(Ψ) with the set of
observables O(Ψ) = {unsat, w, x1, . . . , xn}, the sensors s1(Ψ) and s2(Ψ),
the knowledge base K(Ψ):

r0 : ¬unsat.
r1 : unsat← ¬d1, . . . ,¬dl.

r2,k : ¬dk ← ¬tk,1. (1 ≤ k ≤ l)
r3,k : ¬dk ← ¬tk,2. (1 ≤ k ≤ l)
r4,k : ¬dk ← ¬tk,3. (1 ≤ k ≤ l)
r5,j : yj ← not ¬yj . (1 ≤ j ≤ m)
r6,j : ¬yj ← not yj . (1 ≤ j ≤ m)

21

and the domain description:

s1(Ψ) determines w
s2(Ψ) determines xi (1 ≤ i ≤ n)
s2(Ψ) determines unsat
executable s2(Φ) if w

Consider the evolution:

〈∅, ∅〉 →s1(Ψ) 〈∅, {w}〉 →s2(Ψ) 〈∅, {unsat, w, x1, . . . , xn}〉

and the anomaly W = {w}. The set W = {w} is an anomaly since,
being both unsat and ¬unsat in th(A(Ψ),H(Ψ)), then SH = O(Ψ) ∪
O(Ψ)¬ ∪ Y ∪ Y ¬ ∪ {dk,¬dk | 1 ≤ k ≤ l} is an answer set of the
program th(A(Ψ),H(Ψ)) \ {w} such that ¬w ∈ SH , and, consequently,
th(A(Ψ),H(Ψ)) \ {w} |=b ¬w.
Now we prove that there exists a repair H ′(Ψ) for H(Ψ) w.r.t. W iff Ψ is
satisfiable.

(⇒) Assume that there exists a repair H ′(Ψ) for H(Ψ) w.r.t. W . First
of all, it must be noticed that the value sensed by sensor s1(Φ) in
the evolution H ′(Φ) is {w}, for otherwise the action s2(Φ) is not exe-
cutable in state(H ′[1]).
Then, in order to be the case that th(A(Ψ),H ′(Ψ))\{w} 6|=b ¬w, then
program th(A(Ψ), H ′(Ψ)) \ {w} must have at least a coherent answer
set and, hence, the value for the observable unsat sensed by the sensor
s2(Ψ) in the evolution H ′(Ψ) must be ¬unsat.
Let T X be the truth value assignment associated with the repair
H ′(Ψ), that is the truth assignment T X = O(state(H ′(Ψ))) ∩ (X ∪
X¬).
Now, for the sake of contradiction, assume that there exists a truth
value assignments T Y to the set of variables Y such that T X ∪ T Y

makes f(X,Y) false. Then, by rules r1, r2,k, r3,k, r4,k, it follows that
SH is an answer set of th(A(Ψ), H ′(Ψ))\{w}, and, consequently, that
th(A(Ψ),H ′(Ψ)) |=b ¬w. Thus, it is the case that T X is a truth value
assignment to the set of variables X that makes the formula Ψ true.

(⇐) Assume that Ψ is satisfiable, and let T X be a truth value assignment
to the set of variables X that makes Ψ true. Then the evolution

H ′(Ψ) = 〈∅, ∅〉 →t1(Ψ) 〈∅, {w}〉 →t2(Ψ) 〈∅, {¬unsat, w} ∪ Lit(T X)〉

is a repair for H(Ψ) w.r.t. W . Indeed, the program th(A(Ψ), H ′(Ψ)) \
{w} bravely entails ¬w if and only if it has an incoherent answer set.
Incoherence can be introduced only by rule r1. Notice that, by rules
r5,j , r6,j for each truth value assignments T Y to the set of variables

Y , there exists only one answer set ST
Y

of th(A(Ψ), H ′(Ψ))\{w} such
that ST

Y ⊃ Lit(T Y). Since T X makes Ψ true, it the case that the

body ¬d1, . . . ,¬dl of rule r1 is such that {¬d1, . . . ,¬dl} 6⊆ ST
Y

. As
there are no other answer sets for th(A(Ψ),H ′(Ψ))\{w}, it is the case
that th(A(Φ),H ′(Φ)) \ {w} 6|=b ¬w.

22

(3) (Membership) The problem can be solved by a polynomial time nonde-
terministic Turing machine. Let W be the set {w1, . . . , wn}. Then, the
machine guesses a succession of states H ′ together with S1, . . . , Sn an-
swer sets of th(A,H ′) \W . Then, it checks in polynomial time that all
the conditions in Definition 1 and Definition 3 are satisfied. In particular,
to check for condition (4) in Definition 3, it suffices to verify that either
¬wi 6∈ Si or wi 6∈ O(H ′).

(Hardness) It immediately follows from (1) above. 2

We can finally conclude this section by proving complexity results for
Anomaly&Repair-Check.

Theorem 3 Anomaly&Repair-Check is

(1) P-complete, for negation-by-default-free ELPs,

(2) DP-complete, for general ELPs under brave semantics, and
(3) in ∆P

2 , for general ELPs under cautious semantics.

Proof

(1) (Membership) The problem can be solved by checking that, (i) len(H ′) =
len(H), (ii) state0(H

′) = state0(H), (iii) for each 1 ≤ i ≤ len(H ′),
acti(H

′) = acti(H), (iv) there exists w ∈W such that th(A,H)\W |= ¬w
(P check) and (v) for each w ∈W ∩O(state(H ′)), th(A,H ′)\W 6|= ¬w (P
check). Thus, the overall procedure can be accomplished in polynomial
time.

(Hardness) Given a positive logic program P and a propositional letter q,
consider the agent A(P, q) with the set of observables O = {p, q} (where
p is a novel letter not occurring in P), the sensor s(P, q), the knowledge
base K(P, q) = P ∪ {¬p← p}, and the domain description:

s(P, q) determines p
s(P, q) determines q

Also, consider the evolutions

H(P, q) = 〈∅, ∅〉 →s(P,q) 〈∅, {p,¬q}〉
H ′(P, q) = 〈∅, ∅〉 →s(P,q) 〈∅, {¬p,¬q}〉

and the anomaly W = {¬q}. Given a negation-by-default-free ELP P and
a literal q, deciding whether P 6|= q is a P-complete problem. In order to
complete the proof, now we prove that W is an anomaly for A(P, q) in
H(P, q) and H ′(P, q) is a repair for H(P, q) w.r.t. W iff P 6|= q.

(⇒) Assume that W = {¬q} is an anomaly for A(P, q) in H(P, q) and
H ′(P, q) is a repair for H(P, q) w.r.t. W . Then it is the case that
th(A(P, q),H ′(P, q)) \ {¬q} 6|= q. Let S′ be the unique answer set of
th(A(P, q),H ′(P, q)) \ {¬q}. The answer set S′ must be coherent and
such that q 6∈ S′. Since S′ is coherent and since the value for the
observable p in evolution H ′(P, q) is ¬p, then it follows that S′ \ {¬p}
is the unique answer set of P , and, consequently, that P 6|= q.

23

(⇐) Assume that P 6|= q. Then the unique answer set S of P is coherent
and such that q 6∈ S. Hence, the set S′ = S ∪ {¬p} is the unique
answer set of th(A(P, q),H ′(P, q)) \ {¬q} and this program does not
entail q, so that H ′(P, q) is a repair for H(P, q) w.r.t. W = {¬q}.
As for W = {¬q}, the fact that it is an anomaly for A(P, q) in H(P, q)
is immediately verified by noticing that p is the value sensed in evolu-
tion H(P, q) for the observable p and, hence, being ¬p ← p a rule of
K(P, q), the program th(A(P, q),H(P, q)) \ {¬q} is incoherent regard-
less of the structure of the logic program P .

(2) (Membership) The problem can be solved by a polynomial time deter-
ministic Turing machine with an NP oracle that executes exactly two
oracle calls.
First of all, the machine checks in polynomial time that (i) len(H ′) =
len(H), (ii) state0(H

′) = state0(H), and (iii) for each 1 ≤ i ≤ len(H ′),
acti(H

′) = acti(H). Then, it performs the two oracle calls.
During the first oracle call, the machine guesses a literal w ∈ W and an
answer set S of th(A,H) \ W such that ¬w ∈ S (NP check), so that
th(A,H) \W |=b ¬w.
During the second oracle call, the machine verifies that, for each w ∈
W ∩ O(state(H ′)) and for each answer set S of th(A,H ′) \W , ¬w 6∈ S
(co-NP check), so that th(A,H ′) \W 6|=b ¬w.

(Hardness) Given two consistent ELPs P1 and P2, having no propositional
letters in common, and the letters q1, occurring in P1, and q2, occurring
in P2, let Ω denote the problem

(P1 |=b q1) ∧ (P2 6|=b q2).

Consider the agent A(Ω) with the set of observables O(Ω) = {p1, q1}
(where p1 is a new letter not occurring either in P1 or in P2), the sensor
s(Ω), the knowledge base K(Ω):

r0 : q1 ← q2.
r1,r′ : h(r

′)← b(r′), p1. (r′ ∈ P1)
r2,r′′ : h(r

′′)← b(r′′),¬p1. (r′′ ∈ P2)

and the domain description:

s(Ω) determines o ∀o ∈ O(Ω)

Consider also the evolutions

H(Ω) = 〈∅, ∅〉 →s(Ω) 〈∅, {p1,¬q1}〉
H ′(Ω) = 〈∅, ∅〉 →s(Ω) 〈∅, {¬p1,¬q1}〉

and the anomaly W = {¬q1}.
The problem Ω is the conjunction of two independent problems: an NP-
complete problem (P1 |=b q1) and a co-NP-complete problem (P2 6|=b q2).

Hence, problem Ω is complete for the class DP.

24

Now we prove that W is an anomaly for A(Ω) in H(Ω) and H ′(Ω) is a
repair for H(Ω) w.r.t. W iff Ω is true. First of all, we need to prove the
two following intermediate results.

Claim A: th(A(Ω),H(Ω)) \ {¬q1} |=b q1 if and only if P1 |=b q1.

Proof
(⇒) Recall that the value for the literal p1 sensed by sensor s(Ω) in

evolution H(Ω) is p1. Let S be an answer set of th(A(Ω), H(Ω)) \
{¬q1}. Then, either (a) there does not exist r′′ ∈ P2 such that the
body {b(r′′),¬p1} of rule r2,r′′ is contained in S, or (b) both p1 and
¬p1 are in S and S is incoherent.
Assume that th(A(Ω),H(Ω)) \ {¬q1} |=b q1. Then there exists an
answer set S of th(A(Ω),H(Ω)) \ {¬q1} such that q1 ∈ S. Consider
case (a): recall that the letter q2 does not occur in P1; then the literal
q1 can be entailed only by using rules r1,k, hence P1 |=b q1. As for case
(b): ¬p1 is a new letter not occurring either in P1 or in P2, hence the
literal ¬p1 does not appear in the head of any rule of th(A(Ω), H(Ω))\
{¬q1}; then, the only possibility is that P1 has an incoherent answer
set and, thus, that P1 |= q1.

(⇐) Assume that P1 |=b q1. Then there exists an answer set S1 of P1 such
that q1 ∈ S1. If S1 is coherent, then S = S1 ∪ {p1} is an answer set of
th(A(Ω),H(Ω)) \ {¬q1} such that q1 ∈ S. Indeed, recall that p1 (¬p1,
resp.) is (is not, resp.) a fact of the program th(A(Ω),H(Ω)) \ {¬q1},
and that q2 is a letter not occurring in P1.
On the contrary, if S1 is incoherent, then, regardless of the program P2

having at least an answer set (i.e., that P2 is consistent), the program
th(A(Ω),H(Ω)) \ {¬q1} must have an incoherent answer set S, hence
such that q1 ∈ S, and th(A(Ω),H(Ω)) \ {¬q1} |=b q1. 2

Claim B: th(A(Ω), H ′(Ω)) \ {¬q1} 6|=b q1 if and only if P2 6|=b q2.

Proof
(⇒) Assume that th(A(Ω),H ′(Ω)) \ {¬q1} 6|=b q1. Then the program

P ′′ = th(A(Ω),H ′(Ω)) \ {¬q1} cannot have an incoherent answer set,
and either (a) P ′′ is inconsistent or (b) P ′′ has at least one answer set
and each answer set S of P ′′ is such that q1 6∈ S.
Consider case (a): since ¬p1 (p1, resp.) is (is not, resp.) a fact of
th(A(Ω),H ′(Ω)) \ {¬q1}, p1 is a new letter not occurring either in
P1 or P2, while q1 does not occur in P2, it is the case that P2 is
inconsistent, and, hence, that P2 6|=b q2.
As for case (b): let S be a generic answer set of th(A(Ω),H ′(Ω)) \
{¬q1}. It is known that ¬p1 ∈ S and that q1 6∈ S. Since S is coherent,
it follows that p1 6∈ S and it can be concluded that S \ {¬p1} is also
an answer set of the program P2. As P2 has no other answers sets,
P2 6|=b q2.

(⇐) Assume that P2 6|=b q2. Then P2 cannot have an incoherent answer
set, and either (a) P2 is inconsistent, or (b) P2 has at least one answer
set and each answer S2 of P2 is such that q2 6∈ S2. Consider case
(a): it follows that the program P ′′ is inconsistent, and, hence, that

25

P ′′ 6|=b q1. As for case (b): let S2 be a generic answer set of P2. Recall
that ¬p1 (p1, resp.) is (is not, resp.) a fact of th(A(Ω),H ′(Ω))\{¬q1}.
Since S2 is coherent, it can be concluded that S = S2∪{q1} is also an
answer set of P ′′. As P ′′ has no other answer sets, then P ′′ 6|=b q1. 2

Now we can resume the main proof. The two following facts are now
known:

1. “W is an anomaly for A(Ω) in H(Ω)” ⇐⇒ (by Definition 2)
“th(A(Ω),H(Ω)) \ {¬q1} |=b q1” ⇐⇒ (by Claim A)“P1 |=b q1”, and

2. “H ′(Ω) is a repair for H(Ω) w.r.t. W” ⇐⇒ (by Definition 2)
“th(A(Ω),H ′(Ω)) \ {¬q1} 6|=b q1” ⇐⇒ (by Claim B)“P2 6|=b q2”.

Hence, by combining the two above results, it is proved that W is an
anomaly for A(Ω) in H(Ω) and H ′(Ω) is a repair for H(Ω) w.r.t. W if
and only if Ω is true.

(3) The problem can be solved by a polynomial time deterministic Turing
machine with an NP oracle.
First of all, the machine checks in polynomial time that, (i) len(H ′) =
len(H), (ii) state0(H

′) = state0(H), and (iii) for each 1 ≤ i ≤ len(H ′),
acti(H

′) = acti(H).
Let W = {w1, . . . , wn}. Next, for each wi ∈ W , the machine executes an
oracle call to verify whether th(A,H) \W |=c ¬wi (co-NP check). If the
oracle always returns the answer “no”, then W is not an anomaly in H
for A and the machine stops its execution and returns the answer “no”.
Otherwise, the machine continues its work.
In order to check whether for each w ∈ O(state(H ′)), th(A,H ′) \W 6|=c

¬w, an additional oracle call is performed. Let {wi1 , . . . , wim} = W ∩
O(state(H ′)). During this oracle call, the machine guesses m answer sets
S1, . . . , Sm of th(A,H ′) \W such that, for j = 1, . . . ,m, ¬wij 6∈ Sj (NP
check).
In order to conclude the proof, we note that the machine executes exactly
|W |+ 1 oracle calls, that is a number of calls which is polynomial in the
size of the input. Since the machine is deterministic and overall executes
a polynomially bounded number of steps, then the problem can be solved
in FPNP = F∆P

2 . 2

5 Not-free Programs: Full Repairs and Minimality Conditions

A crucial aspect in the definition of repair considered in the previous sections
lies in the identification of the underlying anomaly W that occurred in a
given evolution. As a matter of fact, however, when fixing an evolution, it
is often convenient to eliminate all the possible anomalies rather than some
pre-identified one. This observation leads to the following definition, whose
study will be the main subject of this section.

Definition 4 (Full Repair) An evolution H ′ for A is a full repair for H if:

(1) len(H) = len(H ′),
(2) state0(H) = state0(H

′),

26

(3) acti(H) = acti(H
′), for each 1 ≤ i ≤ len(H), and

(4) ∀i ∈ {1, . . . , len(H)}, there is no anomaly in H[i]. 2

Thus, a full repair corrects all the anomalies not only in the current state,
but also in any other intermediate state of the evolution. For instance, in our
running example, the reader might check that the repair informally discussed
in Example 5 is also a full repair.

Minimal/Minimum Full Repairs. As a further remark, we note that even
though full repairs remove all the possible anomalies in a given evolution,
they can in principle also update all the possible observations, thereby re-
sulting in possibly rather unnatural evolutions. To avoid this, which might
be undesirable in several circumstances, a viable way consists in constraining
full repairs to satisfy some additional requirements. In particular, singling
out full repairs is next formalized, where a minimal/minimum number of
observations is required to be updated w.r.t. the original evolution.

Definition 5 Let H ′ be a full repair for H in A. Then, H ′ is said to be:

– minimal, if there does not exist a full repair H ′′ for H in A such that
∆(H ′′, H) ⊂ ∆(H ′,H);

– minimum, if there does not exist a full repair H ′′ for H in A such that
|∆(H ′′,H)| < |∆(H ′, H)|;

where ∆(H ′, H) = (O(state(H ′)) \ O(state(H))) ∪ (O(state(H)) \
O(state(H ′))). The size |∆(H ′,H)| of the set ∆(H ′,H) is also called the
size of the repair H ′ for H in A. 2

5.1 Anomalies with not-free Programs

Throughout this section, we shall investigate on the notion of full repair
(possibly under the above additional minimality requirements) in the impor-
tant case where knowledge bases are expressed as negation-by-default-free
programs, for which the entailment relation is efficiently decidable.

Interestingly, for this class of programs, a very natural characterization
for the occurrence of anomalies can be given in terms of the classical notion
of (in)coherence. In fact, the careful reader may have already argued that an
anomaly W may emerge for an agent A in an evolution H, even though the
associated theory th(A,H) is coherent. And, similarly, an incoherent theory
may well not admit any anomaly in it. The reason underlying this behavior
is that our concept of anomaly is very focused on the identification of noisy
observations; while the causes underlying the emergence of an incoherence
in th(A,H) might be of very different kinds and related, for instance, to the
arising of conflicts over beliefs. Thus, in general it is not possible to establish
any relation between these notions.

However, this is not the case for not-free-programs. Indeed, let th(A,H) =
K∪B(state(H))∪O(state(H)) be the not-free theory associated with an agent
A and evolution H. If there is an anomaly for A in H, i.e., if there exists
w ∈ W such that th(A,H) \W |= ¬w then, because of the monotonicity of

27

th(A,H), we have that th(A,H) \ {w} |= ¬w and, hence, that th(A,H) is
incoherent.

For the converse, things are trivial since the incoherence of th(A,H) en-
tails that any observable that does not play a role in the knowledge base
K is an anomaly—w.l.o.g., one can always assume that one such observable
exists. Thus, the following result can be established.

Proposition 1 Let H be an evolution for the agent A with knowledge base
K expressed as a negation-by-default-free ELP. Then, there is an anomaly
for A in H if and only if th(A,H) is incoherent.

And, an immediate corollary is as follows.

Corollary 1 Let H be an evolution for the agent A with knowledge base K
expressed as a negation-by-default-free ELP. Then, an evolution H ′ satisfying
the first three conditions in Definition 4 is a full repair for H in A if and
only if th(A,H ′[i]) is coherent, for each i ∈ {1, ..., len(H)}.

5.2 Relevant Reasoning Tasks

In this section, we continue the complexity analysis initiated in Section 4 by
focusing on the notion of full repairs and on the case of not-free programs.
In particular, we investigate the intrinsic difficulty of the following decision
problems:

Full-Repair-Checking: Given an agent A and two evolutions H and H ′

for A, is H ′ a full repair for H in A ?
Full-Repair-Existence: Given an agent A and an evolutionH for A, does

there exist a full repair H ′ for H in A ?
Full-Repair-Membership: Given an agent A, an evolution H and a literal

o, is o contained in O(state(H ′)) for some full repair H ′ for H in A ?

In fact, we shall consider the problems above also in the cases where full
repairs are constrained to be minimal or minimum. In addition, we shall
also consider the following computation problem which is very peculiar for
minimum full repairs:

Minimal-Full-Repair-Size-Computation: Given an agent A and an evo-
lution H, compute the size of the minimal full repair H ′ for H in A.

Complexity results concerning the problems defined above are depicted in
Figure 4. For the implementation issues discussed in Section 6, it is relevant
to note that all the problems are confined within the first two levels of the
polynomial hierarchy.

Proof of Complexity Results: Full Repairs. We start the discussion of our
results with the Full-Repair-Checking problem.

Theorem 4 Full-Repair-Checking is P-complete.

28

not-free

Full-Repair-Checking P-c
Full-Repair-Existence NP-c
Full-Repair-Membership NP-c
Minimal-Full-Repair-Checking co-NP-c
Minimal-Full-Repair-Existence NP-c
Minimal-Full-Repair-Membership ΣP

2 -c
Minimum-Full-Repair-Checking co-NP-c
Minimum-Full-Repair-Existence NP-c
Minimum-Full-Repair-Membership ∆P

2 [O(log n)-c
Minimum-Full-Repair-Size-Computation F∆P

2 [O(log n)]-c

Fig. 4 Complexity of full repairs for not-free programs.

Proof (Membership) Given an agent A and two evolutions H and H ′ for A,
the problem can be solved by a polynomial time Turing machine as follows.
The machine checks in polynomial time that, (1) len(H ′) = len(H), (2)
state0(H

′) = state0(H), (3) for each 1 ≤ i ≤ len(H ′), acti(H
′) = acti(H),

and (4) for each 1 ≤ i ≤ len(H ′), the evolution H ′[i] has no anomalies.
Checking whether the agent A has an anomaly in the evolution H ′[i] corre-
sponds to solving the Anomaly-Existence problem. Since the background
knowledge of the agent A is a negation-by-default-free logic program, by
Theorem 1, Point 1, the problem is solvable in polynomial time. The overall
procedure can be thus accomplished in polynomial time.

(Hardness) Analogous to the hardness part of Theorem 1, Point 1. 2

Turning from Full-Repair-Checking to Full-Repair-Existence,
things appear intrinsically more complex as shown below.

Theorem 5 Full-Repair-Existence is NP-complete.

Proof (Membership) The problem can be solved by a polynomial time non-
deterministic Turing machine that guesses an evolution H ′ for A and then
checks in polynomial time that H ′ is a full repair for H in A by solving the
Full-Repair-Checking problem.

(Hardness) Given the formula Φ, consider the agent A(Φ) with the set
of observables O(Φ) = {w, x1, . . . , xn}, the sensor s(Φ), the knowledge base
K(Φ):

r0 : ¬unsat.
r1,j : unsat← ¬tj,1,¬tj,2,¬tj,3. (1 ≤ j ≤ m)

and the domain description:

s(Φ) determines o ∀o ∈ O(Φ)

Then, consider the evolution:

H(Φ) = 〈∅, ∅〉 →s(Φ) 〈∅, {w, x1, . . . , xn}〉.

We prove that there exists a full repair H ′(Φ) for H(Φ) in A(Φ) iff Φ is
satisfiable.

29

(⇒) Assume there exists a full repair H ′(Φ) for H(Φ) in A(Φ). Then, it is
the case that there is no anomaly W for A(Φ) in H ′(Φ). Hence, given that
th(A(Φ),H ′(Φ)) is a negation-by-default-theory, it must be the case that
the unique answer set S′ of this theory is coherent. Consequently, there
does not exist a rule r1,j whose body {¬tj,1,¬tj,2,¬tj,3} is contained in
S′. Let X ′ be the set O(state(H ′(Φ)))∩(X∪X¬) of the values associated
with the observables in the set X = {x1, ..., xn} in the evolution H ′(Φ).
Then, the answer set S′ is the set X ′ ∪ {¬unsat}. Notice that the body
of the rule r1,j (1 ≤ j ≤ m) corresponds to the negation ¬Cj of the j-th
clause Cj composing the boolean formula Φ = C1 ∧ . . . ∧ Cm. Hence, it
is the case that the truth value assignment TX′ to the set of variables X
associated with the answer set S′ makes the formula Φ true. Therefore,
Φ is satisfiable.

(⇐) Assume that Φ is satisfiable. Then there exists a truth value assignment
T X to the set of variables X which makes the formula Φ true. Consider
the repair

H ′(Φ) = 〈∅, ∅〉 →s(Φ) 〈∅, {w} ∪ Lit(T X)〉.
From the one-to-one correspondence between rules r1,j and formulas
¬Cj , it follows that none of the bodies {¬tj,1,¬tj,2,¬tj,3} is contained
in Lit(T X). Then, the unique answer set S′ of th(A(Φ),H ′(Φ)) is
Lit(T X) ∪ {w,¬unsat}, and S′ is coherent. Thus, th(A(Φ),H ′(Φ)) is co-
herent and, hence, there is no anomaly for A(Φ) in H ′(Φ). 2

We conclude the analysis of full repairs with the Full-Repair-
Membership problem.

Theorem 6 Full-Repair-Membership is NP-complete.

Proof (Membership) The problem can be solved by a polynomial time non-
deterministic Turing machine that guesses an evolution H ′ for A and then
checks in polynomial time that H ′ is a full repair for H in A by solving
the Full-Repair-Checking problem and that the observable o occurs in
O(state(H ′)).

(Hardness) Consider again the proof of Theorem 5, where the knowledge
base K(Φ) is modified to include the rule rnew : unsat ← ¬h., where h is
a novel observable. Then, it can be noticed that h has to occur in any full
repair for H(Φ) in A(Φ). Thus, checking whether h occurs in some full repair
is equivalent to checking whether there is any full repair at all. 2

Proof of Complexity Results: Minimal Full Repairs. Next, the problems above
are reconsidered while adding a minimality requirement.

Theorem 7 Minimal-Full-Repair-Checking is co-NP-complete.

Proof (Membership) Given an agent A and two evolutions H and H ′ for A,
a polynomial time nondeterministic Turing machine can determine if H ′ is
not a minimal full repair for H in A as follows.

30

The machine checks in polynomial time (by solving the Full-Repair-
Checking problem, see Theorem 4, Point 1) that H ′ is indeed a full repair
for H in A.
In the negative case, the machine terminates its work replying “yes”, other-
wise it guesses a full repair H ′′ for H in A such that ∆(H ′′,H) ⊂ ∆(H ′,H)
and then checks in polynomial time that H ′′ is a full repair for H in A (see
Theorem 4, Point 1). Since the negation of the problem Minimal-Full-
Repair-Checking is in NP, then this problem is in co-NP.

(Hardness) Consider the boolean formula Φ = C1∧. . .∧Cm in conjunctive
normal form, with Cj = tj,1 ∨ tj,2 ∨ tj,3, where each tj,k is a literal on the set
of boolean variables X = x1, . . . , xn. W.l.o.g., assume that the assignment
where all the variables are evaluated false does not satisfy Φ.

Given the formula Φ, consider the agent A(Φ) with the set of observables
O(Φ) = {unsat, x1, . . . , xn}, the sensor s(Φ), the knowledge base K(Φ):

r0 : ¬unsat.
r1,j : unsat← ¬tj,1,¬tj,2,¬tj,3, ok. (1 ≤ j ≤ m)
r2,j : ok ← xi. (1 ≤ j ≤ m)

and the domain description:

s(Φ) determines o ∀o ∈ O(Φ)

Consider the evolution

H(Φ) = 〈∅, ∅〉 →s(Φ) 〈∅, {unsat, x1, . . . , xn}〉,

and the evolution

H ′(Φ) = 〈∅, ∅〉 →s(Φ) 〈∅, {¬unsat,¬x1, . . . ,¬xn}〉.

We first claim that H ′(Φ) is a full repair, i.e., that the theory
th(A(Φ), H ′(Φ)) is coherent. Indeed, let S be the unique answer set of
th(A(Φ), H ′(Φ)). Because of the rule r2,j , it is the case that ok 6∈ S. Thus,
unsat does not belong to S, which is the only possible source of incoherence
in the theory K(Φ) above.

Next, we show that H ′(Φ) is, in fact, a minimal full repair for H(Φ) in
A(Φ) iff Φ is unsatisfiable. But, beforehand, we need to observe that each
possible full repair for H(Φ), which is different from H ′(Φ), must be of the
form:

H ′′(Φ) = 〈∅, ∅〉 →s(Φ) 〈∅, {¬unsat} ∪ Lit(T X)〉

where T X is a truth value assignment to the set of variables X that satisfies
Φ. Indeed, whenever T X does not satisfy Φ and X 6= {¬x1, ...,¬xn}, we have
that unsat is entailed.

(⇒) Assume thatH ′(Φ) is a minimal full repair and, for the sake of contradic-
tion, that Φ is satisfiable. Let T X be a satisfying assignment for Φ. Then,
consider the full repair H ′′(Φ) = 〈∅, ∅〉 →s(Φ) 〈∅, {¬unsat} ∪ Lit(T X)〉.
Given that Lit(T X) 6= {¬x1, ...,¬xn}, it holds: ∆(H ′′(Φ),H(Φ)) ⊂
∆(H ′(Φ),H(Φ)). Contradiction, since H ′(Φ) is minimal.

31

(⇐) Assume that Φ is not satisfiable and, for the sake of contradiction, that
H ′(Φ) is not minimal. Then, there exists a full repair H ′′(Φ) such that
∆(H ′′(Φ), H(Φ)) ⊂ ∆(H ′(Φ), H(Φ)). We recall that H ′′(Φ) must be of
the form: H ′′(Φ) = 〈∅, ∅〉 →s(Φ) 〈∅, {¬unsat} ∪ Lit(T X)〉, where T X is a
truth value assignment to the set of variables X that satisfies Φ, hence a
contradiction is implied. 2

Clearly enough, the existence of a full repair immediately entails the ex-
istence of a minimal full repair. Thus, the following is immediate from The-
orem 5.

Theorem 8 Minimal-Full-Repair-Existence is NP-complete.

Yet, working with minimal full repairs is intrinsically more complex, as
implied from the hardness result for the second level of the polynomial hier-
archy discussed below.

Theorem 9 Minimal-Full-Repair-Membership is ΣP
2 -complete.

Proof (Membership) Given an agent A, an evolution H and a literal o, we can
check whether o is contained in O(state(H ′)) for some minimal full repair H ′

for H in A as follows. A polynomial-time non-deterministic Turing machine
first guesses an evolutionH ′ forH in A, and then checks that: (i)H ′ is indeed
a minimal full repair, and (ii) o ∈ O(state(H ′)). While the second condition
can be checked in polynomial time, the first one requires the exploitation of
a co-NP oracle (cf. Theorem 7).

(Hardness) Consider the quantified boolean formula Ψ = ∃X∀Y f(X,Y),
where X = x1, . . . , xn, Y = y0, y1, . . . , ym, f(X,Y) = D1 ∨ . . . ∨ Dl is in
conjunctive normal form, with Dk = tk,1 ∧ tk,2 ∧ tk,3, and each tk,1, tk,2, tk,3
is a literal on the set of boolean variables X and Y . W.l.o.g., assume that y0
being false satisfies Ψ .

Based on Ψ , consider the agent A(Ψ) with the set of observables O(Ψ) =
{w, x1, x̄1, . . . , xn, x̄n, ok, y0, y1, ..., ym}, the sensor s(Ψ), the knowledge base
K(Ψ):

r0 : ¬unsat.
r1,i : unsat← xi, x̄i. (1 ≤ i ≤ n)
r2,i : unsat← ¬xi,¬x̄i. (1 ≤ i ≤ n)
r3 : ok ← ¬y0,¬y1, ...,¬ym.

r4,j : ¬ok ← yj . (0 ≤ j ≤ m)
r5,k : true← tk,1, tk,2, tk,3. (1 ≤ k ≤ l)
r6,j : ¬yj ← true. (0 ≤ j ≤ m)

and the domain description:

s(Ψ) determines o ∀o ∈ O(Ψ)

Consider the evolution:

H(Ψ) = 〈∅, ∅〉 →s(Ψ) 〈∅, {w, x1, x̄1, ..., xn, x̄n,¬ok, y0, y1, ..., ym}〉.

We now claim that ok occurs in some minimal full repair H ′ for H(Ψ) if and
only if Ψ is satisfiable.

32

(⇒) Assume that ok occurs in a minimal full repair H ′ for H(Ψ). Since
ok ∈ O(state(H ′)) and since H ′[1] has to be coherent—otherwise would
have an anomaly over w (cf. Proposition 1)—, it is the case that Y ¬ ⊂
O(state(H ′)) because of rules r4,j .
Consider, now, the set SX = O(state(H ′)) ∩ (X ∪X¬) that encodes an
assignment T X = TSX for the existentially quantified variables in Ψ . Also,
consider the set S̄X = {¬x̄i | xi ∈ SX} ∪ {x̄i | ¬xi ∈ SX} and note that,
due to rules r1,i and r2,i, O(state(H ′)) ⊃ SX ∪ S̄X .
We claim that T X witnesses the validity of Ψ . Indeed, assume for the
sake of contradiction, that there is an assignment T Y for the universally
quantified variables such that T X and T Y do not satisfy Ψ—note that
the variable y0 has to evaluate true in T Y . Then, we build the evolution

H ′′ = 〈∅, ∅〉 →s(Ψ) 〈∅, {w,¬ok} ∪ SX ∪ S̄X ∪ Lit(T Y)〉.

By construction, th(A(Ψ),H ′′) is coherent (in particular, note that true
is not entailed from r5,k) and, hence, H

′′ is a full repair.
To conclude this part of the proof it is, then, sufficient to observe that:
∆(H ′′, H) ⊂ ∆(H ′,H), a contradiction with the fact that H ′ is a mini-
mal full repair. To see why this is the case, note that O(state(H ′)) and
O(state(H ′′)) coincide over w and SX ∪ S̄X , while there is certainly an
advantage in taking Lit(T Y) and ¬ok (in H ′′) w.r.t. Y ¬ and ok (in H ′).

(⇐) Assume that T ∗ witnesses the satisfiability of Ψ . Consider the evolution
H ′ of the form 〈∅, ∅〉 →s(Ψ) 〈∅,O(state(H ′)〉, where:

O(state(H ′)) = {w, ok,¬y0,¬y1, ...,¬ym}∪
{xi,¬x̄i | xi is true in T ∗}∪
{¬xi, x̄i | xi is false in T ∗}.

Note that H ′ is a repair for H(Ψ). Then, we claim that H ′ is a minimal
full repair. To this end, assume for the sake of contradiction, that there
is a full repair H ′′ such that ∆(H ′′,H) ⊂ ∆(H ′, H).
Let S′X = O(state(H ′))∩ (X ∪X¬) and S′′X = O(state(H ′′))∩ (X ∪X¬).
First, we note that S′X must be equal to S′′X . Indeed, due to rules r1,i and
r2,i, any full repair HR for H(Ψ) must be such that xi ∈ O(state(HR))
(¬xi ∈ O(state(HR)), resp.) if and only if ¬xi ∈ O(state(HR)) (xi ∈
O(state(HR)), resp.). Thus, in order to have S′X 6= S′′X it must be the
case that either
(a) there exists xi ∈ X such that xi ∈ S′X (and, consequently, ¬xi ∈ S′X)

and ¬xi ∈ S′′X (and, consequently, xi ∈ S′′X), or
(b) there exists xi ∈ X such that ¬xi ∈ S′X (and, consequently, xi ∈ S′X)

and xi ∈ S′′X (and, consequently, ¬xi ∈ S′′X).
But, in both cases we have that:
(a) ∆(H ′,H) ⊃ ({xi,¬xi} \ {xi, xi}) ∪ ({xi, xi} \ {xi,¬xi}) = {xi,¬xi}

and neither xi nor ¬xi belong to ∆(H ′,H), while ∆(H ′′,H) ⊃
({¬xi, xi} \ {xi, xi}) ∪ ({xi, xi} \ {¬xi, xi}) = {¬xi, xi}, and, hence,
∆(H ′′,H) 6⊆ ∆(H ′,H), or

(b) ∆(H ′,H) ⊃ ({¬xi, xi} \ {xi, xi}) ∪ ({xi, xi} \ {¬xi, xi}) = {¬xi, xi}
and neither xi nor ¬xi belong to ∆(H ′,H), while ∆(H ′′,H) ⊃

33

({xi,¬xi} \ {xi, xi}) ∪ ({xi, xi} \ {xi,¬xi}) = {¬xi, xi}, and, hence,
∆(H ′′,H) 6⊆ ∆(H ′,H).

We can eventually conclude that S′X is equal to S′′X .
In addition, since H ′′ 6= H ′, it must be the case that there is a variable
yj such that yj ∈ O(state(H ′′)), and consequently, because of rules r4,j ,
that ¬ok is in O(state(H ′′)). Consider, now, the assignment TSY , where
SY = O(state(H ′′))∩ (Y ∪Y ¬). Since, T ∗ witnesses the validity of Ψ , we
have that Ψ evaluates true over TSX (conducing with T ∗ when restricted
over X) and TSY . Then, because of the rules r5,k and r6,k, it must be
the case that Y ¬ ⊂ O(state(H ′′)). But, this is impossible because yj ∈
O(state(H ′′)). 2

Proof of Complexity Results: Minimum Full Repairs. We close this section by
presenting complexity results regarding minimum full repairs. Interestingly,
our first observation is that the complexity of the checking problem is not
altered when swapping from minimal to minimum requirements.

Theorem 10 Minimum-Full-Repair-Checking is co-NP-complete.

Proof (Membership) Given an agent A and two evolutions H and H ′ for A,
a polynomial time nondeterministic Turing machine can determine if H ′ is
not a minimum full repair for H in A as follows.
The machine checks in polynomial time (by solving the Full-Repair-
Checking problem, see Theorem 4, Point 1) that H ′ is indeed a full repair
for H in A.
In the negative case, the machine terminates its work replying “yes”, other-
wise it guesses a full repairH ′′ forH in A such that |∆(H ′′,H)| < |∆(H ′,H)|
and then checks in polynomial time that H ′′ is a full repair for H in A (see
Theorem 4, Point 1). Since the negation of the problem Minimum-Full-
Repair-Checking is in NP, then this problem is in co-NP.

(Hardness) The reduction is identical to that described in the hardness
part of Theorem 7. In particular in Theorem 7, an agent A(Φ) and two evo-
lutions H(Φ) and H ′(Φ) for A(Φ) are associated with the boolean formula
Φ, such that H ′(Φ) is a minimal full repair for H(Φ) in A(Φ) if and only
if Φ is unsatisfiable. Since, by construction of the reduction, all the evolu-
tions H ′′(Φ) that are candidates to be full repairs for H(Φ) in A(Φ) satisfy
the property ∆(H ′′(Φ), H(Φ)) ⊆ ∆(H ′(Φ),H(Φ)), it follows that H ′(Φ) is a
minimal full repair for H(Φ) in A(Φ) if and only if H ′(Φ) is a minimum full
repair for H(Φ) in A(Φ). 2.

As with the case of minimal full repairs, the existence of a full repair im-
mediately entails the existence of a minimum full repair. Thus, the following
is immediate from Theorem 5.

Theorem 11 Minimum-Full-Repair-Existence is NP-complete.

Next, the membership problem is analyzed, which turns out to be confined
within the first level of the polynomial hierarchy. Beforehand, we assess the
exact complexity of computing the size of the minimum full repair, which is
useful to better understand our membership result.

34

Theorem 12 Minimum-Full-Repair-Size-Computation is complete for
F∆P

2 [O(log n)].

Proof (Membership) Let n∗ be the minimum size associated with a full repair
H ′ for H in A. The value n∗ can be computed by a deterministic polynomial
time transducer with an oracle in NP executing a binary search in the interval
of integer numbers [1, n], where n is the number |O(state(H))| of observables
sensed in evolution H. At each step of the search, a threshold n ∈ [1, n] is
given, and it is decided, by calling the NP oracle, whether there exists a full
repair H ′ for H in A such that |∆(H ′,H)| ≤ n. The oracle guesses an evolu-
tion H ′ for A such that |∆(H ′,H)| ≤ n and then checks in polynomial time
that H ′ is a full repair for H in A by solving the Full-Repair-Checking
problem. Since the overall procedure is feasible by executing at most O(log n)
oracle calls, the function can be computed in F∆P

2 [O(log n)].

(Hardness) Recall that computing the size of the maximum clique in a
graph is F∆P

2 [O(log n)]-complete [19]. Let G = (V,E) be an undirected graph,
where V = {v1, . . . , vn} is the set of the nodes and E is the set of the edges
{vj , vj} (vi, vj ∈ V) of the graph G.

Given the graph G, consider the agent A(G) with the set of observables
O(G) = {clique, v1, . . . , vn}, the sensor s(G), the knowledge base K(G):

r0 : clique.
r1,i,j : ¬ok ← vi, vj . (∀{vi, vj} 6∈ E)

r2 : ok.

and the domain description:

s(G) determines o ∀o ∈ O(G)

Consider the evolution:

H(G) = 〈∅, ∅〉 →s(G) 〈∅, {¬clique, v1, . . . , vn}〉.

Now we prove that there is a one-to-one correspondence between cliques
C of the graph G and full repairs HC(G) for H(G) in A(G) such that
|∆(HC(G),H(G))| = 2(n+ 1− |C|). Indeed, maximum cliques will then cor-
respond to minimum full repairs.

(⇒) Let C be a clique in the graph G. Consider the evolution

HC(G) = 〈∅, ∅〉 →s(G) 〈∅, {clique} ∪ C ∪ (V \ C)¬〉.

Now we prove that the unique answer set SC of the program
th(A(G), H(G)) is coherent. By contradiction, assume that SC is inco-
herent. Then, it is the case that at least the body {vi, vj} of a rule r1,i,j
is contained in C ∪ (V \ C)¬. Since there does not exist in G an edge con-
necting nodes vi and vj , this contradicts the fact that C is a clique.
Hence, it follows that HC(G) is a full repair for H(G) in A(G). As for the
size of the set ∆(HC(G),H(G)), this is |∆(HC(G),H(G))| = 2|V \C|+2 =
2(n− |C|) + 2 = 2(n+ 1− |C|).

35

(⇐) Let H ′(G) be a full repair for H(G) in A(G). Then, th(A(G),H ′(G)) is
coherent, and hence its unique answer set S′, by rules r1,i,j and r2, is
such that ¬ok 6∈ S′. Therefore, it is the case that there does not exist a
pair of positive literals vj , vj in O(state(H ′(G))) such that {vi, vj} 6∈ E,
or, equivalently, that the set of nodes

C = V ∩ O(state(H ′(G)))

is a clique of the graph G. From what we have stated above, it follows
that O(state(H ′(G))) = {clique} ∪ C ∪ (V \ C)¬, and the size of the set
∆(H ′(G),H(G)) is |∆(H ′(G),H(G))| = 2|V \ C|+ 2 = 2(n+ 1− |C|). 2

We are now in the position of proving the result about the Minimum-
Full-Repair-Membership problem.

Theorem 13 Minimum-Full-Repair-Membership is ∆P
2 [O(log n)]-

complete.

Proof (Membership) Given an agent A, an evolution H and a literal o, we
can check whether o belongs to O(state(H ′)) for some minimum full repair
H ′ for H in A as follows. First of all, the machine computes the size n∗ of
the minimum full repair for H. This can be accomplished by calling O(log n)
times an NP oracle, where n is the number |O(state(H))| of observables
sensed in evolution H, as detailed in the membership part of Theorem 12.

Then, the machine performs an additional query to the oracle in order to
check whether there exists a full repair H ′ for H in A of size n∗ such that
the observable o occurs in O(state(H ′)). Thus, this time the oracle guesses
an evolution H ′ for A such that |∆(H ′,H)| = n∗ and o ∈ O(state(H ′)), and
then checks in polynomial time that H ′ is indeed a full repair for H in A.

(Hardness) Let Φ = C1 ∧ . . . ∧ Cm be a boolean formula in conjunctive
normal form, with Cj = tj,1∨tj,2∨tj,3, where each tj,k is a literal on the set of
boolean variables X = x1, . . . , xn. An assignment T for X is csat-maximum
for Φ iff it satisfies the maximum number of clauses over all the assignments
for X. The problem of deciding whether every csat-maximum assignment
satisfies C1 is ∆P

2 [O(log n)]-complete [30].
Since ∆P

2 [O(log n)] is closed under complement, the problem of deciding
whether there is a csat-maximum assignment which does not satisfy C1 is also
complete for this class. We shall exploit a reduction for this latter problem.

Given the formula Φ, consider the agent A(Φ) with the set of observables
O(Φ) = {x1, x̄1, . . . , xn, x̄n, c1, ..., cm}, the sensor s(Φ), the knowledge base
K(Φ):

r0 : ¬unsat.
r1,i : unsat← xi, x̄i. (1 ≤ i ≤ n)
r2,i : unsat← ¬xi,¬x̄i. (1 ≤ i ≤ n)
r3,j : ¬cj ← ¬tj,1,¬tj,2,¬tj,3. (1 ≤ j ≤ m)

and the domain description:

s(Φ) determines o ∀o ∈ O(Φ)

36

Consider the evolution:

H(Φ) = 〈∅, ∅〉 →s(Φ) 〈∅, {x1, x̄1, . . . , xn, x̄n, c1, ..., cm}〉.

Let us firstly investigate on the structure of minimum full repairs. For each
full repair H ′, we note that |{xi, x̄i} ∩ O(state(H ′))| = 1 holds for each 1 ≤
i ≤ n, because of rules r0, r1,i and r2,j and the fact thatH ′[1] must not lead to
incoherent information. Moreover, let SX be the set {x1,¬x1, ..., xn,¬xn} ∩
O(state(H ′)). Then, ¬cj is in O(state(H ′)), for each clause Cj that is not
satisfied by TSX

, because of rules r3,j . Thus, minimum full repairs are in
one-to-one correspondence with csat-maximum assignments for Φ.

Armed with this observation, we can conclude that ¬c1 occurs in
O(state(H ′)) for some minimum full repair H ′ for H(Φ) in A(Ψ) if and
only if there is a csat-maximum assignment that does not satisfy C1. 2

6 Repair Computation over Answer Set Engines

Now that the framework for identifying and repairing anomalous executions
in noisy environments has been illustrated and its complexity has been in-
vestigated, attention can be focused on the problem of devising effective
strategies for its implementation.

To this end, sound and complete algorithms are next exhibited that trans-
form any pair (A,H) of an agent and an evolution for it, respectively, into a
suitable (extended) logic program P(A,H) such that its answer sets are in
one-to-one correspondence with the full repairs for H in A.

The most interesting aspect of this transformation is that, since answer
sets represent the solution of the reasoning problems, it is possible to imple-
ment a prototype tool for finding repairs in anomalous evolutions with the
support of efficient engines such as GnT [45], DLV [51] and Smodels [62]. In
fact, this tool might act as a front-end for any engine supporting the compu-
tation of answer sets of logic programs, as is graphically sketched in Figure 5:
The basic idea is that a rewriting module implements the algorithm produc-
ing the specification P(A,H), and that a wrapping module is subsequently
interfaced with the output of the engine, so that answer sets are parsed and
translated into the repairs for H in A. In fact, reformulations in terms of
logic programs have already been exploited in the literature for prototypi-
cally implementing other reasoning tasks such as abduction (see, e.g., [47,
52]), planning (see, e.g., [27,74]), and diagnosis (see, e.g., [20,26]).

Fig. 5 Conceptual architecture for implementation on top of answer set engines.

In order to show the key ingredients of the approach, we shall next focus
our attention on those scenarios where the background knowledge is formal-
ized by means of negation-by-default-free extended logic programs. Indeed,
these scenarios are very simple and intuitive, but yet expressive enough to

37

encode problems that are complete for the first and the second level of the
polynomial hierarchy, as it emerged from the complexity analysis carried out
in the previous sections. In fact, despite the absence of negation by default,
the emergence of problems complete for the second level of the polynomial
hierarchy makes it impossible to devise polynomially-bounded encodings in
terms of extended logic programs, since this formalism is known to capture
the complexity class NP only (see, e.g., [21]). Therefore, even in the case of
this basic setting, we need to resort to a more powerful formalism; and, our
choice here is to consider extended logic programs enhanced with disjunction,
which are able to model any problem that is complete for the second level of
the polynomial hierarchy under the answer set semantics (cf. [21]). Investi-
gating different implementation strategies for general background knowledge
bases is left as subject for further research.

A few notes on disjunctive programs. For the sake of completeness, we con-
clude this overview of the implementation approach by recalling that disjunc-
tive extended logic programs allow clauses to have both disjunction (denoted
by ∨) in their heads and negation in their bodies. More formally, a disjunctive
rule r is a clause of the form:

L1
0 ∨ · · · ∨ Lh

0 ← L1, · · · , Lm, not Lm+1, · · · , not Ln.

where h > 0, n ≥ m ≥ 0 and each Li (resp., L
j
0) is a literal, i.e., a proposi-

tional letter or its classical negation.
Then, answer sets for disjunctive programs are defined precisely as answer

sets for disjunction-free programs, provided the extension of the notion of
closure for contexts. Formally, let P be a negation-by-default-free disjunctive
program; a context S is closed under P iff for each rule r of the form L1

0 ∨
· · ·∨Lh

0 ← L1, · · · , Lm., if L1, · · · , Lm are in S, then at least one of the literals
in {L1

0, ..., L
h
0} is in S as well.

It is well-known that deciding the existence of a coherent answer set is
ΣP

2 -complete for this class of programs [29].

6.1 Basic Rewriting

In order to implement repair problems for negation-by-default-free back-
ground knowledge bases, we make use of the rewriting algorithm Repair-
ToANSW shown in Figure 6. The algorithm takes as input an agent A and
an evolution H, and outputs a logic program P(A,H), whose salient as-
pects are discussed below. Beforehand, we shall discuss the notation used in
P(A,H) and, in particular, the three ingredients in it.

First, the program P(A,H) is built by avoiding the use of classical nega-
tion as well as of negation by default, which is an implementation choice sug-
gested by the need of being flexible in the way inconsistency is dealt with—
for instance, deriving a letter p and its negation ¬p should sometimes be
allowed for implementing the “saturation” technique we shall discuss to deal
with minimal repairs. Therefore, for any propositional letter p in P(A,H),
we just denote its classical negation ¬p by means of a novel and distinguished

38

Input: An agent A and H : 〈S0
B , S0

O〉 →a1 〈S
1
B , S1

O〉 →a2 ...→an 〈S
n
B , Sn

O〉;
Output: A logic program P(A,H);
Method: Perform the following steps:

1. P(A,H) := ∅;
2. /*——— Initialization ———*/

for each literal l ∈ S0
B ∪ S0

O, insert into P(A,H) the fact

(a) σ(l)0.
for each letter l 6∈ (S0

B ∪ S0
O) ∪ (S0

B ∪ S0
O)¬, insert into P(A,H) the fact

(b) u l0.
3. /*——— (not-free) K rewriting ———*/

for each rule r ∈ K of the form h← b1, ..., bm, insert into P(A,H) the rules

(a) σ(h)ik ← σ(b1)
i
k, ..., σ(bm)ik., where i = 1..n

for each literal l ∈ B ∪ O, insert into P(A,H) the rules

(b) lik ← li.

(c) l̄ik ← l̄i.
4. /*——— Beliefs update ———*/

for each ef-prop. ai causes l if p1, ..., pk, insert into P(A,H) the rules

(a) σ(l)i ← σ(p1)
i−1, ..., σ(pk)

i−1.

(b) σ(l)i ← σ(l)i−1, σ(¬pj)
i−1., where j = 1..k

(c) u li ← u li−1, σ(¬pj)
i−1., where j = 1..k

(d) σ(¬l)i ← σ(¬l)i−1, σ(¬pj)
i−1., where j = 1..k

(e) ui ← u γ(pj)
i−1., where j = 1..k

(f) ut γ(pj)
i ← pi−1

j ., where j = 1..k

(g) ut γ(pj)
i ← u γ(pj)

i−1., where j = 1..k

(h) σ(l)i ← σ(l)i−1, ut γ(p1)
i−1, ..., ut γ(pk)

i−1, ui.

(i) u γ(l)i ← u γ(l)i−1, ut γ(p1)
i−1, ..., ut γ(pk)

i−1, ui.

(j) u γ(l)i ← σ(¬l)i−1, ut γ(p1)
i−1, ..., ut γ(pk)

i−1, ui.
for each letter l ∈ B not caused by ai, insert into P(A,H) the rules

(k) li ← li−1.

(l) l̄i ← l̄i−1.

(m) u li ← u li−1.
5. /*——— Sensing ———*/

for each k-prop. ai determines o if q1, ..., qk, insert into P(A,H) the rules

(a) oi ∨ ōi ← σ(q1)
i−1, ..., σ(qk)

i−1.
for each o ∈ O not determined by ai insert into P(A,H) the rules

(b) oi ← oi−1.

(c) ōi ← ōi−1.

(d) u oi ← u oi−1.
for each l ∈ B ∪ O insert into P(A,H) the rules

(e) bad← lik, l̄
i
k.

(f) bad← lik, l̄
i
k.

6. /*——— Executability ———*/
for each ex-prop. executable ai if l1, ..., lk insert into P(A,H) the rules

(a) bad← σ(¬lj)i−1., where j = 1..k

(b) bad← u γ(lj)
i−1., where j = 1..k

Fig. 6 Algorithm RepairToANSW.

predicate symbol p̄; and, for notational convenience, we make use of the func-
tion σ such that σ(p) = p and σ(¬p) = p̄. In addition, for each literal l, by
γ(l) we shall denote the letter on top of which it is built. Also, since we are
dealing with 3-valued interpretations, we shall use the symbol u p to denote
that the truth value of p is currently unknown.

The second notational ingredient in P(A,H) serves the aim of keeping
track of the actions a1, ..., an in the evolution H. Thus, each literal l is now
equipped with an index ranging in 1..n denoting the state of the evolution

39

in which its truth value is being considered; accordingly, li is used to denote
the literal l in the i-th step of the evolution.

Finally, the last notational ingredient is that all the rules in K will be
evaluated over distinguished predicates, as to avoid conflicts with the other
rules in P(A,H). Thus, for any letter li, the corresponding letter in K is
denoted by lik.

We are now ready to discuss the five steps illustrated in Figure 6. Step 1
and Step 2 are responsible for the initialization of the program P(A,H). In
particular, in rule 2.(a) we add a fact for each literal (belief or observable) that
occurs in the first step of the evolution (and, hence, in the v-propositions of
the domain description), while in rule 2.(b) we state that all the other literals
are unknown in the initial state.

Rules inserted in Step 3 serve the purpose of evaluating the knowledge
base K, which is instantiated for each step i = 1..n of the evolution. In par-
ticular, 3.(b) and 3.(c) copy the values for the fluents over the corresponding
letters in K (only those that are known to be true or false in the i-th state),
while 3.(a) is responsible for the actual evaluation.

Rules inserted in Step 4 and Step 5 serve to model the domain descrip-
tion, and in fact they are inspired by the logic programming translation of
the 0-semantics in [10,73]. In more detail, rules inserted in the Step 4 aim
at updating the beliefs based on each non-sensing action ai occurred in H.
Indeed, rule 4.(a) asserts the effect l of the proposition whenever precondi-
tions hold. Rule 4.(b), 4.(c), and 4.(d) state that the truth value of l remains
unchanged if the precondition is false. Eventually, rules 4.(e)...4.(j) deal with
the scenario where the precondition is possibly true, but not actually true.
Finally, rule 4.(k), 4.(l), and 4.(m) take care of those beliefs that are not
affected by ai, and whose values remain unchanged by inertia.

Rules inserted in Step 5 serve the crucial role of handling the sensing
of the environment. In particular, 5.(a), 5.(b), 5.(c), and 5.(d) act similarly
to the corresponding rules added in Step 4. The main difference is that a
disjunctive rule is now used to state that at each step i where a sensing
occurs for a letter o, either o or its negation ¬o (here represented as ō)
should hold. Also, observables that are not sensed by ai keep their previous
value. In fact, if some problems occur with the sensing and an incoherence
emerges from K, then bad has to be derived (cf. 5.(e) and 5.(f)).

Finally, rule 6.(a) and rule 6.(b) are used to enforce the entailment of bad,
whenever the action ai is not executable.

Summarizing the construction above, we may say that the program
P(A,H) simulates the evolution H with the only difference that sensing
values are left uncertain, so that each possible answer set will correspond to
a possible way of sensing the sensors. Clearly enough, only correct sensing
leads to repairs for H; therefore P(A,H) should be further constrained as to
avoid the entailment of bad. The correctness of the rewriting is stated next.

Theorem 14 Let A be an agent with negation-by-default-free normalized
knowledge base and H : 〈S0

B , S
0
O〉 →t1 〈S1

B , S
1
O〉 →t2 ... →tn 〈Sn

B , S
n
O〉 be

an evolution for A. Let P ′ be the program P(A,H)∪{c← bad, not c.}, where
c is a distinguished letter and where P(A,H) is the rewriting obtained by the
algorithm in Figure 6. Then,

40

(1) for each answer set S of P ′, H(S) is a full repair for H in A, and

(2) for each full repair H̃ for H in A, there is an answer set S of P ′ such

that H̃ = H(S),

where H(S) : 〈SB(S)
0, SO(S)

0〉 →t1 ...→tn 〈SB(S)
n, SO(S)

n〉, with
– SB(S)

i = {l | li ∈ S ∧ l ∈ B} ∪ {¬ l | l̄i ∈ S ∧ l ∈ B}, and
– SO(S)

i = {o | oi ∈ S ∧ o ∈ O} ∪ {¬ o | ōi ∈ S ∧ o ∈ O}.

Proof

(1) Let S be an answer set of P ′. Beforehand, we note that the rule

c← bad, not c.

acts as a constraint, since it forces bad not to occur in S; otherwise, S
would not be an answer set. It follows that, at each step, the result of
the application of ai conforms with the semantics of the 0-approximation,
because of the rules 4.(a)...4.(m), 5.(a)...5.(d), 6.(a), and 6.(b) that im-
plement Equation (1) and Equation (2). In particular, each action ai is
executable, for otherwise bad would be entailed by rules 6.(a) and 6.(b).
Thus, we have that H(S) is indeed an evolution. In fact, by construction,
the first three conditions in Definition 4 are satisfied and, it only remains
to show that for each i ∈ {1, ..., n}, H[i] contains no anomalies. To this
end, we exploit Proposition 1 and notice that to avoid anomalies, at each
step i, the theory th(A,H[i]) has to be coherent. Eventually, if th(A,H[i])
were incoherent, we would conclude that bad is entailed in S as well, due
to rules 5.(e) and 5.(f), which is impossible.

(2) Let H̃ : 〈S̃0
B , S̃

0
O〉 →t1 〈S̃1

B , S̃
1
O〉 →t2 ...→tn 〈S̃n

B , S̃
n
O〉 be a full repair for

H in A, and consider the context S obtained by closing the set:

{li | l ∈ S̃i
B ∪ S̃i

O ∧ l ∈ B ∪ O}∪
{l̄i | ¬l ∈ S̃i

B ∪ S̃i
O ∧ l ∈ B ∪ O}∪

{u li | (l ∪ ¬l) ∩ (S̃i
B ∪ S̃i

O) = ∅ ∧ l ∈ B ∪ O}∪
{lik | th(A, H̃[i]) |= l ∧ l ∈ B ∪ O}∪
{l̄ik | th(A, H̃[i]) |= ¬l ∧ l ∈ B ∪ O}

under the inference w.r.t. rules 4.(e)...4.(j).

In fact, by construction it holds that H(S) = H̃. Thus, we have only
to show that S is an answer set of P ′. Indeed, if some of the rules were
not satisfied by S, one may immediately conclude that H̃ is not a full
repair. Thus, we have to show that S is minimal. Assume, for the sake
of contradiction, that there exists a context S′ ⊂ S that is closed under
Red(P ′, S) = P(A,H). Since bad 6∈ S′, we can use the same line of
reasoning as in the proof of point (1) above and conclude that H(S′) is a
full repair for H. Then, when comparing H(S′) with H(S), since S′ ⊂ S
there must be a state, say i∗, such that either SB(S

′)i
∗ ⊂ SB(S)

i∗ or
SO(S

′)i
∗ ⊂ SO(S)

i∗ , while SB(S
′)i = SB(S)

i and SO(S
′)i = SO(S)

i, for
each i < i∗. But, this is impossible because of the definition of evolution
and because of the fact thatH(S) = H̃ is a repair, and hence an evolution,
by hypothesis. 2

41

6.2 Minimum repairs

In order to deal with the problem of singling out minimum full repairs
for noisy evolutions, we shall next exploit an approach to encode opti-
mization problems that is used, for instance, in the DLV system [51]. The
approach relies on the use of weak constraints, i.e., of rules of the form
:∼ b1, · · · , bk, not bk+1, · · · , not bk+m, expressing a set of desired conditions
that may be however violated (the constraint is violated if the expression
evaluates to true). Their informal semantics is to minimize the number of
violated instances. In fact, in [17] it is proved that the introduction of weak
constraints allows the solution of optimization problems since each weak
constraint can be regarded as an “objective function” of an optimization
problem.

Given a disjunctive logic program P and a set W of weak constraints, the
idea is to order the answer sets of P w.r.t. the number of weak constraints that
are not satisfied: best stable models are those that minimize this number [17].

Example 6 Given a graph G = 〈V,E〉, denoted by the unary predicate node
and the binary predicate edge, we can model the MAX CLIQUE problem, asking
for the clique of G having maximum size, by means of the following program:

c(X)← not nc(X), node(X).
nc(X)← not c(X), node(X).
p← c(X), c(Y), X 6= Y, not edge(X,Y), not p.
:∼ nc(X).

where the first two rules are used for creating all the possible partitions of
nodes into c and nc, the third one is used for ensuring that nodes in c form
a clique, i.e., each pair of nodes in c is connected by an edge, while the weak
constraint minimizes the number of vertices that are not in the clique, or
equivalently it maximizes the size of the clique. Then, the best stable models
are in one-to-one correspondence with maximum-size cliques in G. �

Thus, the algorithm in Figure 6 can be modified by inserting the con-
straint :∼ σ(¬o)n. into P(A,H), for each observable o inO(state(H)). Then,
letting P∼(A,H) be the transformed program resulting from applying the
modified algorithm, we have that minimum repairs are in one-to-one corre-
spondence with best stable models, as shown by the following theorem.

Theorem 15 Let A be an agent with negation-by-default-free normalized
knowledge base and H : 〈S0

B , S
0
O〉 →t1 〈S1

B , S
1
O〉 →t2 ... →tn 〈Sn

B , S
n
O〉 be

an evolution for it. Let P ′ be the program P∼(A,H) ∪ {c ← bad, not c.}.
Then,

(1) for each best answer set S of P ′, H(S) is a minimum full repair for H
in A, and

(2) for each minimum full repair H̃ for H in A, there is a best answer set S

of P ′ such that H̃ = H(S),

42

Input: An agent A and H : 〈S0
B , S0

O〉 →t1 〈S
1
B , S1

O〉 →t2 ...→tn 〈S
n
B , Sn

O〉;
Output: A logic program P∨(A,H);
Method: Perform the following steps:

1. /*——— Initialization ———*/
let Pw(A,H) be a copy of P(A,H) where each letter p is replaced by pw

2. P∨(A,H) := P(A,H) ∪ Pw(A,H);
3. /*——— Saturation ———*/

insert into P∨(A,H) the rules
(a) w ← σ(o)n, σ(¬o)nw., where o ∈ O(state(H))
(b) eq ow ← on, onw., where o ∈ O(state(H))
(c) eq ow ← ōn, ōnw., where o ∈ O(state(H))
(d) w ← eq l1w, ..., eq lhw., where {l1, ...lh} = O(state(H))
(e) w ← badw.
(f) w ← not w.
(g) pw ← w., where pw is a letter in Pw(A,H)

Fig. 7 Algorithm MinimalRepairToANSW.

Proof Given A and H, the answer sets of P(A,H) ∪ {c ← bad, not c}
are in one-to-one correspondence with the full repairs for H. By definition
these answer sets are to be ordered w.r.t. the number of violated weak con-
straints. In fact, each weak constraint is of the form :∼ σ(¬o)n. where o is in
O(state(H)); thus, violating this constraint means that the value of o differs
between H(S) and H. Minimizing the number of violated constraints in a
best model S amounts, then, to minimizing the differences over the values
for the observables between the full repair H(S) and the evolution H. 2

6.3 Minimal full repairs

We conclude this section by discussing how minimal full repairs can be iden-
tified. In this case, we observe that the power of the disjunctive encoding has
to be fully exploited in order to deal with the reasoning task that lies at the
second level of the polynomial hierarchy.

Indeed, the careful reader may have noticed that the program P(A,H)
does not make any substantial use of the disjunctive connective, since the
guesses of a suitable value for the observations performed in 5.(a) could have
been equivalently obtained by using negation-by-default rules.

To model minimal full repairs, instead, disjunction has to be used in a
more elaborate way. To this end, we shall apply a “saturation” technique on
top of the rewriting P(A,H). The resulting algorithm is reported in Figure 7.

The basic idea in it is to consider the rewriting P(A,H) together with a
copy of it, denoted by Pw(A,H), where each letter p in P(A,H) is consis-
tently replaced with a fresh letter pw. The role of P(A,H) plus the constraint
c← bad, not c. is to encode the derivation of full repairs for H.

The role of Pw(A,H) is instead to guarantee that such computed repairs
are in fact minimal ones. To this end, we note that because of step 3.(f) (in
Figure 7), any answer set of P∨(A,H) must contain w and in turn all the
letters of the form pw, because of 3.(g)—thus, these letters are saturated.
Then, the other rules are defined to guarantee that w is entailed as long as
the full repair is a minimal one.

43

Theorem 16 Let A be an agent with negation-by-default-free normalized
knowledge base and H : 〈S0

B , S
0
O〉 →t1 〈S1

B , S
1
O〉 →t2 ... →tn 〈Sn

B , S
n
O〉 be

an evolution for it. Let P ′ be the program P∨(A,H) ∪ {c ← bad, not c.}.
Then,

(1) for each answer set S∨ of P ′, H(S∨) is a minimal full repair for H in
A, and

(2) for each minimal full repair H̃ for H in A, there is an answer set S∨ of

P ′ such that H̃ = H(S∨).

Proof

(1) Consider an answer set S∨ of P ′ and let S∨ = S ∪ Sw, where S only
contains literals defined in P(A,H), while Sw only contains literals of the
form pw (defined in Pw(A,H) plus rules in Step 3) and possibly the letter
w. In fact, note that because of the rule 3.(f), it is the case that w ∈ S∨

and, hence, because of the rule 3.(g), Sw contains all the letters of the
form pw as well as w.
Now, consider the evolution H(S∨) that coincides with H(S), since each
state in it is defined over predicates in P(A,H). This evolution is, indeed,
a full repair for H in A, since we can precisely apply the same line of
reasoning as in Theorem 14. Thus, we only need to show that H(S) is a
minimal full repair.
Assume for the sake of contradiction that H(S) is not minimal and let H∗

be the full repair such that∆(H∗, H) ⊂ ∆(H(S),H). Consider the answer
set S∗ for the program P(A,H)∪{c← bad, not c.} such that H(S∗) = H∗

(cf. Theorem 14). And, eventually, let us build the set S∗w = {lw | l ∈ S∗}.
We claim that S′ = S∪S∗w∪{eq ow | (o ∈ S∧o ∈ S∗w)∨(¬o ∈ S∧¬o ∈ S∗w)}
is closed under Red(P ′, S∨).
To this aim, note that rules in P(A,H) and Pw(A,H) are trivially sat-
isfied by S and Sw, respectively. Thus, it remains to show that the rules
added in the Step 3 are also satisfied. In fact, rules 3.(a) are satisfied
since ∆(H∗,H) ⊂ ∆(H(S),H) and, hence, their body evaluates to false.
Rule 3.(b), 3.(c), and 3.(d) are satisfied by construction of S′ and since
H∗ 6= H and, hence, we would not need to entail w. Rule 3.(e) does not
apply since H∗ is a full repair and, hence, no incoherences occur with it.
Rule 3.(f) does not occur in the reduct of P ′, since w evaluates to true
in S∨. And, finally, rule 3.(g) is satisfied since the body is trivially false.
It follows that S′ ⊂ S∨ is closed under Red(P ′, S∨), which is impossible,
since S∨ is an answer set for P ′.

(2) Let H̃ be a minimal full repair for H in A. Consider the context S ∪ Sw

such that: Sw contains all the letters of the form pw as well as w; and, S
is such that H(S) = H̃ according to the construction in Theorem 14. We
claim that S ∪ Sw is an answer set for P ′. Actually, the fact that S ∪ Sw

is closed under P ′ derives from the fact that S is closed under P(A,H)∪
{c← bad, not c} and that Sw contains all the literals in Pw(A,H).
Then, assume for the sake of contradiction that S ∪ Sw is not a minimal
context for Red(P ′, S ∪ Sw). Note that S is a minimal context for the
program P(A,H), because of the arguments in the proof of Theorem 14.
Thus, we have to assume that there is another context of the form S∪S′w

44

that is closed under Red(P ′, S ∪ Sw) and such that: S′w ⊂ Sw. Then,
because of the rule 3.(g), we have to assume that w is not in S′w. Consider
now the set S′ = {l | lw ∈ S′w}. According to the rules 3.(a), 3.(d),
and 3.(e), the fact that w 6∈ S′w entails that H(Sw) is a full repair such
that ∆(H(Sw),H) ⊂ ∆(H(S),H), a contradiction with the fact that

H(S) = H̃ is a minimal full repair. 2

7 Related Work

Several areas of research are related with the contribution of this paper rang-
ing, for instance, from representing the uncertainty arising from noisy sensors
to repairing inconsistent knowledge bases. Below we discuss some of the main
features our framework shares with this related literature.

Monitoring frameworks. We start the discussion by pointing out that the
problem of detecting and recovering anomalies in dynamic environments can
naturally be perceived as an execution plan monitoring problem that is fo-
cused on the identification of noisy sensors. In this respect, we note however
that two major differences characterize the proposed approach w.r.t. previous
approaches in the literature (see, e.g., [61,38,31,33,25,22]).

First, for most of the earlier approaches, the reliability of the sensors
is not a crucial issue, since anomalies emerge as discrepancies between the
actual execution and a set of intended or preferred trajectories that are given
to hand (possibly, in an implicit way after having fixed the goal), rather than
as discrepancies between the observations gained through sensors and the
available knowledge. And, second, by repairing an evolution we aimed at
equipping the agent with some novel possible perception of the status of the
world (without affecting the transitions already performed by the agent),
whereas classical monitoring frameworks aim at finding an alternative plan
ensuring the reachability of the goal and possibly undo some of the actions.

Belief change. Besides the marginal influence coming from earlier monitoring
approaches, the careful reader may have noticed that our formalization is
reminiscent of the growing body of research focusing on reasoning in the
presence of incoherent information. Indeed, anomalies emerge as a form of
disagreement between the background knowledge and the observations, so
that the repairing process is just a method for resuming the agent’s view of
the world to a coherent state.

A classical reference in this context is the well-known AGM theory of be-
lief revision originated by [1] and further developed by [2,3], in which some
methods are proposed to revise a background theory when evidences from
the world happen to be in conflict with it (success axiom). While in the
classical model of belief revision the input sentence is always accepted, sev-
eral models of belief change have been proposed subsequently, in which no
absolute priority is assigned to the new information due to its novelty [43]
(non-prioritized belief revision). However, these approaches are only loosely
related to the work done here.

Indeed, as far as the comparison with the belief revision in presence of the
success axiom is concerned, rather than being interested in revising the agent

45

theory in order to entail the new information provided by the environment,
we are interested in singling out environmental manifestations to be doubted
about, while taking the background knowledge for granted.

Moreover, in the more general scenario in which no absolute priority is
assigned to the new information due to its novelty, it must be said that
the form of agreement usually taken into account by non-prioritized belief
revision approaches is the consistency one. For example, in the decision +
revision approach [58], the input sentence can be taken into account only
if it is consistent with a set of pre-defined core beliefs. Moreover, in order
to incorporate part of the input in the belief state, a strategy to remove
inconsistency is generally defined. On the contrary, we have already noticed
that according to our approach an anomaly may emerge for an agent in
an evolution even though the agent’s theory is coherent and, also, that an
incoherent theory may well not admit any anomaly in it.

More importantly, when repairing an evolution, we determine values for
the sensors that eliminate the discrepancy with the agent background knowl-
edge, and this is done by flipping the actual truth value of some of the
associated observations, while in belief change, the belief set is revised by
adding or deleting beliefs.

(Consistency-based) Diagnosis. Other classical references for reasoning with
inconsistent knowledge bases come from the study of the diagnosis prob-
lem, which is the problem of finding what is wrong with some possibly mal-
functioning systems based on knowledge about the design of that system
and observations about its actual behavior (cf. [66,65]). In particular, in the
consistency-based approach to diagnosis, the problem is that of isolating com-
ponents that are not consistent with all other components acting normally.
Formally, there is a set H of hypotheses, a background theory T , and a set
O of observations; then, the problem is to single out a set ∆ ⊆ H so that
T ∪ O ∪∆ is consistent in the classical sense. In classical approaches, there
is no knowledge as to how malfunctioning occurs and manifests itself, and
only the “normal” behavior is axiomatized [37,48,67]. For instance, in [67], a
hypothesis ¬ab(C) is introduced for each component C that can possibly be
faulty, and what follows from the assumptions of normality is cast into rules.
In other approaches, faulty behavior of components can be constrained by
including fault models, that is, functional descriptions of the components in
case they are broken (see, e.g., [77,49]).

Clearly enough, the major difference with our approach is again in the
focus on revising the observations. Indeed, our notion of repair differs from
those usually exploited in diagnostic approaches (see, e.g., [8,59,6,79,63])
because of the focus on recovering values from faulty sensors, rather than on
identifying hypotheses that may explain a malfunctioning of the system.

Repairs. We conclude by observing that the notion of “repair” has been
widely used in different contexts in the last few years (sometimes under
different names), with the ultimate goal of recovering a system, a knowledge
base, or a database to a consistent state. For instance, in [78] the reader may
find a general framework for reasoning about inconsistency over a broad class
of nonmonotonic logics.

46

Similarly, in the context of database applications, the notion of repair [4]
has been observed to play a crucial role for dealing with violations of integrity
constraints that may have happened for different reasons, for instance, when
pre-existing data are re-organized under a new schema that has integrity
constraints describing semantic aspects of the new scenario. In most of the
approaches in the literature (see, e.g., [12,18,16,28,4,40,53,34,32,57]), a re-
pair is a new database that satisfies the constraints in the schema and that
is obtained by deleting and/or adding tuples in the original database, de-
pending on the underlying semantics adopted for the inconsistent database
and on the kinds of integrity constraints which are allowed on the schema.
In particular, repairs are usually defined as those databases that minimize
(w.r.t. some given order such as subset minimality or minimum cardinality,
to cite a few) the number of modifications needed to restore consistency.

Note that in our framework anomalies in observations are not dropped
in order to be coherent with the rest of the observations in an evolution, but
rather they are are detected and modified. Thus, the perspective adopted in
this paper is slightly different from that of the works discussed above, and
is in fact closer to the approaches in [13,11], where fine-grained methods are
exploited to define repairs by attribute-value modifications. In these latter
contexts, the optimality criteria is not hard-coded in the definition (precisely
as in our case), and various notions of cost for attribute-value modifications
are introduced and their complexity is investigated. In particular, the exis-
tence of a repair within a given distance to the original database instance
turns out to be NP-complete is such frameworks, thereby agreeing with the
results presented in this paper. Eventually, for the sake of completeness note
that [80] has recently shown how to combine tuple-based and attribute-based
repairs in a database context with a single framework.

We leave the section by noticing that in some approaches in the literature
(see, e.g., [41,76]), repairs have been extend to take into account (user) pref-
erence criteria to improve the quality of the result. In particular, [76] uses a
priority relation among tuples as the basis for ranking repairs, and then for
selecting the “best” among them. Following this perspective, an interesting
avenue of further research is to exploit user preferences in our framework to
incorporate extra knowledge that a user can have w.r.t. specific sensors, by
adding it on top of our current notion of repairs as to rank them.

8 Conclusion

In this paper we have defined a formal framework good for reasoning about
agents’ belief state evolution in environments sensed through possibly unre-
liable sensors. In our framework, no information whatsoever (neither certain
nor probabilistic) is assumed to be available in advance about the reliabil-
ity of sensors. However, the agent’s perception can be maintained correct
through the identification and the resolution of discrepancies occurring be-
tween sensor delivered data and the agent’s internal trustable knowledge,
encoded in the form of an ELP under answer set semantics. After having
defined the formal framework, in order to pinpoint main computational com-
plexity sources implied in the implementation of the anomaly detection and

47

repairing agent’s belief state evolution, several reasoning problems have been
considered and their intrinsic difficulty has been studied. Finally, rewriting
algorithms have been also proposed that make the framework implementable
on top of available answer set engines (e.g., [51,62]).

We believe that our investigation is a step towards providing capabilities
for dynamic plan monitoring and repairing in noisy environments, where
it can be useful for an agent that is trying to achieve its goals to be able
to monitor, identify anomalies and fix a plan while evolving [20,26,33]. In
this respect, the implementation of anomaly identification primitives based
on our rewriting algorithms deserves further work to make them available
within conditional planning environments (e.g, [56,68]).

All the rewriting algorithms discussed in the paper as well as some specific
complexity studies refer to the case of negation-by-default-free ELPs. Thus,
an interesting avenue of further research would be completing the complexity
analysis carried out in Section 5 for the case of general background knowledge
bases, and investigating different implementation strategies for them.

The theoretical machinery we have developed in this paper accounts for
environments where no information is available about sensors’ reliability nor
such information can be gained by agents while exploiting them, which is in-
deed significant in many scenarios. However, one might also consider strate-
gies whereby an agent having looked at a specific sensor s as a faulty one
may safely assume that s is going to provide wrong information in possible
subsequent agent’s reads. This would have influence on the agent’s planning
strategies in future steps. In particular, plan formation and monitoring al-
gorithms might be constructed as to take into account sensors to “become”,
in the agent’s perception, faulty. Also, numerical “reliability levels” might
be associated to sensors to be exploited during plan formation and updates
when plan faults and recovery take place. Finally, sensor reliability evalua-
tion might be conducted by running agents cooperatively in order to be able
to collect more useful information. We leave this much-interesting avenue of
research as future work.

Finally, we note that even though the sensors under consideration can only
report binary states, the framework we propose is not limited to the man-
agement of binary environmental measures, as many-valued discrete signals
can be indeed simulated by sets of binary signals. However, investigating the
impact of enriching the framework with sensors delivering real-valued data
might also be an interesting direction for further research.

Acknowledgements The authors thank the anonymous referees for their useful
comments and suggestions, which helped improving the quality of the paper.

References

1. Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change:
Partial meet contraction and revision functions. Journal of Symbolic Logic
50(2), 510–530 (1985)

2. Alchourrón, C.E., Makinson, D.: The logic of theory change: Contraction func-
tions and their associated revision functions. Theoria 48, 14–37 (1982)

48

3. Alchourrón, C.E., Makinson, D.: On the logic of theory change: Safe contrac-
tion. Studia Logica 44, 405–422 (1985)

4. Arenas, M., Bertossi, L.E., Chomicki, J.: Consistent query answers in inconsis-
tent databases. In: Proc. of the 18th ACM SIGACT SIGMOD SIGART Symp.
on Principles of Database Systems (PODS), pp. 68–79 (1999)

5. Bacchus, F., Halpern, J.Y., Levesque, H.J.: Reasoning about noisy sensors and
effectors in the situation calculus. Artificial Intelligence, 111(1-2): 171–208
(1999)

6. Balduccini, M., Gelfond, M.: Diagnostic reasoning with a-prolog. Journal of
Theory and Practice of Logic Programming 3(4-5), 425–461 (2003)

7. Baral, C., Kreinovich, V., Trejo, R.: Computational complexity of planning and
approximate planning in the presence of incompleteness. Artificial Intelligence
122(1-2), 241–267 (2000)

8. Baral, C., McIlraith, S.A., Son, T.C.: Formulating diagnostic problem solving
using an action language with narratives and sensing. In: Proc. of the 7th
Int. Conf. of Principles of Knowledge Representation and Reasoning (KR), pp.
311–322 (2000)

9. Baral, C., Tran, N., Tuan, L.C.: Reasoning about actions in a probabilistic
setting. In: Proc. of the 18th Conf. on Artificial Intelligence and 14th Conf.
on Innovative Applications of Artificial Intelligence (AAAI/IAAI), pp. 507–512
(2002)

10. Baral, C., Son, T.C.: Approximate reasoning about actions in presence of sens-
ing and incomplete information. In: Proc. of the 1997 International Logic
Programming Symposium (ILPS), pp. 387–401 (1997).

11. Bertossi, L., Bravo, L., Franconi, E., Lopatenko, A.: The complexity and ap-
proximation of fixing numerical attributes in databases under integrity con-
straints. Information Systems 33(4-5), 407–434 (2008)

12. Bertossi, L., Chomicki, J., Cortes, A., Gutierrez, C.: Consistent answers from
integrated data sources. In: Proc. of the 6th Int. Conf. on Flexible Query
Answering Systems (FQAS), pp. 71–85 (2002)

13. Bohannon, P., Flaster, M., Fan, W., Rastogi, R.: A Cost-Based Model and
Effective Heuristic for Repairing Constraints by Value Modification, In: Proc.
of the ACM SIGMOD Int. Conf. on Management of Databooktitle (SIGMOD),
pp. 143–154 (2005)

14. Boutilier, C., Dean, R., Hanks. S.: Planning under uncertainty: structural as-
sumptions and computational leverage. JAIR, 11: 1-94 (1999)

15. Boutilier, C., Reiter, R., Price. B.: Symbolic dynamic programming for first-
order MDPs. In: Proc. of the 17th Int. Joint Conf. on Artificial Intelligence
(IJCAI), pp. 690–700 (2001)

16. Bravo, L., Bertossi, L.: Logic programming for consistently querying data inte-
gration systems. In: Proc. of the 18th Int. Joint Conf. on Artificial Intelligence
(IJCAI), pp. 10–15 (2003)

17. Buccafurri, F., Leone, N., Rullo, P.: Enhancing disjunctive datalog by con-
straints. IEEE Transactions on Knowledge and Data Engineering 12(5), 845–
860 (2000)

18. Cal̀ı, A., Lembo, D., Rosati, R.: Query rewriting and answering under con-
straints in data integration systems. In: Proc. of the 18th Int. Joint Conf. on
Artificial Intelligence (IJCAI), pp. 16–21 (2003)

19. Chen, Z., Toda, S.: The complexity of selecting maximal solutions. Information
and Computation 119(2), 231–239 (1995)

20. Damasio, C., Pereira, L.M., Schroeder, M.: Revise: Logic programming and
diagnosis. In: Proc. of the 4th International Conference on Logic Programming
and Non-monotonic Reasoning (LPNMR), pp. 354–363. Dagstuhl, Germany
(1997)

21. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive
power of logic programming. ACM Computing Survey 33(3), 374–425 (2001)

22. Dix, J., Either, T., Fink, M., Polleres, A., Zhang, Y.: Monitoring Agents using
Declarative Planning. Fundamenta Informaticae, 57(2-4), 345–370 (2003)

23. Dix, J., Kraus, S., Subrahmanian, V.S.: Heterogenous Temporal Probabilistic
Agents, ACM Transactions of Computational Logic 7(1), 151–198 (2006)

49

24. Dix, J., Nanni, M., Subrahmanian, V.S.: Probabilistic Agent Reasoning, ACM
Transactions of Computational Logic 2(1), 201–245 (2000)

25. Eiter, T., Erdem, E., Faber, W.: Plan reversals for recovery in execution moni-
toring. In: Proc. of the 10th Int. Work. on Non-Monotonic Reasoning (NMR),
pp. 147–154 (2004)

26. Eiter, T., Faber, W., Leone, N., Pfeifer, G.: The diagnosis frontend of the dlv
system. AI Communications 12(1-2), 99–111 (1999)

27. Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: A logic program-
ming approach to knowledge-state planning: Semantics and complexity. ACM
Transaction on Computational Logic 5(2), 206–263 (2004)

28. Eiter, T., Fink, M., Greco, G., Lembo., D.: Repair localization for query an-
swering from inconsistent databases. ACM Transactions on Database Systems
33(2), (2008)

29. Eiter, T., Gottlob, G.: On the Computational Cost of Disjunctive Logic Pro-
gramming: Propositional Case. Ann. Math. Artif. Intell. 15(3-4): 289-323
(1995)

30. Eiter. T., Gottlob. G.: The Complexity of Logic-Based Abduction. Journal of
the ACM 42(1), 3–42 (1995)

31. Eiter, T., Mascardi, V., Subrahmanian, V.: Error-tolerant agents. In: A.C.
Kakas, F. Sadri (eds.) Computational Logic. Logic Programming and Beyond,
pp. 586–625 (2002)

32. Faber, W., Greco, G., Leone, N.: Magic Sets and their application to data
integration. Journal of Computer and System Sciences 73(4), 584–609 (2007)

33. Fichtner, M., Großmann, A., Thielscher, M.: Intelligent execution monitoring
in dynamic environments. Fundamenta Infformaticae 57(2-4), 371–392 (2003)

34. Franconi, E., Palma, A.L., Leone, N., Perri, S., Scarcello, S.: Census Data
Repair: A Challenging Application of Disjunctive Logic Programming. In:
Proc. of the 8yh Int. Conf. on Logic for Programming, Artificial Intelligence,
and Reasoning (LPAR), pp. 561–578 (2001)

35. Gelfond, M., Lifschitz. V.: Classical Negation in Logic Programs and Disjunc-
tive Databases. New Generation Computing, 9(3-4): 365–386 (1991).

36. Gelfond, M., Lifschitz. V.: Representing actions and change by logic program-
ming. Journal of Logic Programming, 17(2-4): 301–323 (1993).

37. Genesereth, M.R.: The use of design descriptions in automated diagnosis. Ar-
tificial Intelligence 24, 411–436 (1984)

38. Giacomo, G.D., Soutchanski, M., Reiter, R.: Execution monitoring of high-level
robot programs. In: Proc. of the 6th Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR), pp. 453–464 (1998)

39. Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic
causal theories. Artificial Intelligence 153, 49–104 (2004)

40. Greco, G., Greco, S., Zumpano, E.: A Logical Framework for Querying and
Repairing Inconsistent Databases. IEEE Transactions on Knowledge and Data
Engineering 15(6), 1389–1408 (2003)

41. Greco, G., Lembo, D.: Data Integration with Preferences Among Sources. In:
Proc. of the 23rd International Conference on Conceptual Modeling (ER), pp.
231–244 (2004)

42. Halpern, J.Y., Tuttle, M.R.: Knowledge, probability, and adversaries. Journal
of the ACM 40(4), 917–962 (1993)

43. Hansson, S.O.: A Survey of Non-Prioritized Belief Revision. Erkenntnis 50,
413–427 (1999)

44. Iocchi, L., Lukasiewicz, T., Nardi, D., Rosati, R.: Reasoning about actions
with sensing under qualitative and probabilistic uncertainty. In: Proc. of the
6th European Conf. on Artificial Intelligence (ECAI), pp. 818–822 (2004)

45. Janhunen, T., Niemelä, I., Simons, P., You, J.H.: Unfolding partiality and dis-
junctions in stable model semantics. In: Proc. of the 7th Int. Conf. on Principles
of Knowledge Representation and Reasoning (KR), pp. 411–419 (2000)

46. Johnson, D.S.: Handbook of Theoretical Computer Science, Volume A: Al-
gorithms and Complexity, chap. A catalog of complexity classes, pp. 67–161.
Elsevier and The MIT Press (co-publishers) (1990)

50

47. Kakas, A.C., Mancarella, P.: Database updates through abduction. In: Proc of.
the 16th Int. Conf. on Very Large Data Bases (VLDB), pp. 650–661. Brisbane,
Queensland, Australia (1990)

48. de Kleer, J., Williams, B.C.: Diagnosing multiple faults. Artificial Intelligence
32(1), 97–130 (1984)

49. de Kleer, J., Williams, B.C.: Diagnosis with behavioral modes pp. 124–130
(1992)

50. Krentel, M.W.: The complexity of optimization problems. Journal of Computer
and System Sciences 36(3), 490–509 (1988)

51. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.:
The dlv system for knowledge representation and reasoning. ACM Transactions
on Computational Logic, 7(3), 499-562 (2006)

52. Lin, F., You, J.H.: Abduction in logic programming: A new definition and
an abductive procedure based on rewriting. Artificial Intelligence 140(1-2),
175–205 (2002)

53. Lin, J., Mendelzon, A.O.: Merging databases under constraints. International
Journal of Cooperative Information Systems 7(1), 55–76 (1998)

54. Littman, M.L., Goldsmith, J., Mundhenk. M.: The Computational Complexity
of Probabilistic Planning. JAIR 9:1–36 (1998).

55. Lobo, J., Mendez, G., Taylor, S.R.: Adding knowledge to the action description
language a. In: Proc. of the 14th Conf. on Artificial Intelligence and 9th Conf.
on Innovative Applications of Artificial Intelligence (AAAI/IAAI), pp. 454–459
(1997).

56. Lobo. J.: COPLAS: a COnditional PLannner with Sensing Actions. In: FS-98-
02, AAAI (1998).

57. Lopatenko, A., Bertossi, L.: Complexity of Consistent Query Answering in
Databases Under Cardinality-Based and Incremental Repair Semantics. In:
Proc. of 11th Int. Conf. on Database Theory (ICDT), pp. 179–193 (2007)

58. Makinson, D.: Screened Revision. Theoria 63, 14–23 (1997)
59. McIlraith, S.: Representing action and state constraints in model-based di-

agnosis. In: Proc. of the 14th Conf. on Artificial Intelligence and 9th Conf.
on Innovative Applications of Artificial Intelligence (AAAI/IAAI), pp. 43–49
(1997).

60. Moore, R.C.: A formal theory of knowledge and action. In: J.R. Hobbs, R.C.
Moore (eds.) Formal Theories of the Common Sense World, pp. 319–358 (1985)

61. Nebel, B., Koehler, J.: Plan reuse versus plan generation: a theoretical and
empirical analysis. Artificial Intelligence 76(1-2), 427–454 (1995).

62. Niemelä, I., Simons, P.: Smodels: An implementation of the stable model and
well-founded semantics for normal LP. In: Proc. of the 4th Int. Conf. on Logic
Programming and Nonmonotonic Reasoning (LPNMR), pp. 420–429 (1997)

63. Otero, M., Otero, R.P.: Using causality and actions for diagnosis. In: Proc. of
11th Int. Workshop on Principles of Diagnosis, pp. 171–176 (2000)

64. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading,
Mass. (1994)

65. Poole, D.: Representing knowledge for logic-based diagnosis. In: Proc. of the
Int. Conf. on Fifth Generation Computing Systems, pp. 1282–1290 (1988)

66. Poole, D.: Normality and faults in logic-based diagnosis. In: Proc. of the 11th
Int. Joint Conf. on Artificial Intelligence (IJCAI), pp. 1304–1310 (1989)

67. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence
32(1), 57–96 (1987)

68. Rintanen. J.: Constructing conditional plans by a theorem prover. JAIR,
10:323–352 (2000).

69. Scherl, R.B., Levesque, H.J.: Knowledge, action, and the frame problem. Ar-
tificial Intelligence 144(1-2), 1–39 (2003)

70. Selman, A.L.: A taxonomy of complexity classes of functions. Journal of Com-
puter and System Sciences 48(2), 357–381 (1994)

71. Scherl, R., Levesque, H.J.: Knowledge Producing Actions. In: Proc. of the 9th
Int. Conf. on Knowledge Representation and Reasoning (KR), pp. 1139–1146
(1994).

51

72. Son, T., Tu, P., Baral, C.: Planning with sensing actions and incomplete in-
formation using logic programming. In: Proc. of the 7th Int. Conf. on Logic
Programming and Nonmonotonic Reasoning (LPNMR), pp. 261–274 (2004)

73. Son, T.C., Baral, C.: Formalizing sensing actions a transition function based
approach. Artificial Intelligence 125(1-2), 19–91 (2001)

74. Son, T.C., Tu, P.H., Baral, C.: Planning with sensing actions and incomplete
information using logic programming. In: Proc. of the 7th Int. Conf. on Logic
Programming and Nonmonotonic Reasoning (LPNMR), pp. 261–274 (2004)

75. Son, T.C., Tu, P.H., Baral, C.: Reasoning and Planning with Sensing Actions,
Incomplete Information, and Static Causal Laws using Answer Set Program-
ming. Theory and Practice of Logic Programming 7(4), 377–450 (2007)

76. Staworko, S., Chomicki, J., Marcinkowski, J.: Preference-Driven Querying of
Inconsistent Relational Databases. In: Proc. of EDBT Workshops, pp. 318–335
(2006)

77. Struss, P., Dressler, O.: “physical negation” - integrating fault models into the
general diagnosis engine. In: Proc. of the 11th Int. Joint Conf. on Artificial
Intelligence (IJCAI), pp. 1318–1323 (1989)

78. Subrahmanian, V.S., Amgoud, L.: A General Framework for Reasoning about
Inconsistency. In: Proc. of the 20th Int. Joint Conf. on Artificial Intelligence
(IJCAI), pp. 599–504 (2007)

79. Thielscher, M.: A theory of dynamic diagnosis. Electronic Transactions on
Artificial Intelligence 1, 73–104 (1997)

80. Wijsen, J.: Database Repairing Using Updates. ACMTransactions on Database
Systems 30(3), 722–768 (2005).

