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Abstract We present a novel definition of outlier whose aim is to embed an
available domain knowledge in the process of discovering outliers. Specifically,
given a background knowledge, encoded by means of a set of first-order rules,
and a set of positive and negative examples, our approach aims at singling
out the examples showing abnormal behavior. The technique here proposed
is unsupervised, since there are no examples of normal or abnormal behavior,
even if it has connections with supervised learning, since it is based on induc-
tion from examples. We provide a notion of compliance of a set of facts with
respect to a background knowledge and a set of examples, which is exploited
to detect the examples that prevent to improve generalization of the induced
hypothesis. By testing compliance with respect to both the direct and the dual
concept, we are able to distinguish among three kinds of abnormalities, that
are irregular, anomalous, and outlier observations. This allows us to provide
a finer characterization of the anomaly at hand and to single out subtle forms
of anomalies. Moreover, we are also able to provide explanations for the ab-
normality of an observation which make intelligible the motivation underlying
its exceptionality. We present both exact and approximate algorithms for min-
ing abnormalities. The approximate algorithms improve execution time while
guaranteeing good accuracy. Moreover, we discuss peculiarities of the novel
approach, present examples of knowledge mined, analyze the scalability of the
algorithms, and provide comparison with noise handling mechanisms and some
alternative approaches.
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1 Introduction

Outlier detection is an active research field in data mining that has many ap-
plications in all those domains that can lead to illegal or abnormal behavior,
such as fraud detection, network intrusion detection, medical diagnosis, mar-
keting or customer segmentation (Hodge and Austin, 2004; Chandola et al,
2009).

Approaches to outlier detection can be classified in supervised, semi-supervised,
and unsupervised. Supervised methods exploit the availability of a labeled data
set, containing observations already labeled as normal and abnormal, in order
to build a model of the normal class (Chawla et al, 2004). Since usually normal
observations are the great majority, these data sets are unbalanced and spe-
cific classification techniques have to be designed to deal with the presence of
rare classes. Semi-supervised methods assume that only normal examples are
given. The goal is to find a description of the data, that is a rule partitioning
the object space into an accepting region, containing the normal objects, and a
rejecting region, containing all the other objects (Schölkopf et al, 1995). These
methods are also called one-class classifiers or domain description techniques,
and they are related to novelty detection since the domain description is used
to identify objects significantly deviating form the training examples. Unsu-
pervised methods search for outliers in an unlabelled data set by assigning to
each object a score which reflects its degree of abnormality (Knorr and Ng,
1998; Breunig et al, 2000; Papadimitriou et al, 2003; Angiulli and Pizzuti, 2005;
Kriegel et al, 2008; Angiulli and Fassetti, 2009a). Scores are usually computed
by comparing each object with objects belonging to its neighborhood.

Traditional approaches model the normal behavior of individuals by per-
forming some statistical kind of computation on the given data set and, then,
single out those individuals whose behavior or characteristics significantly de-
viate from normal ones. However, a very interesting direction of research con-
cerns the capability of exploiting domain knowledge in order to guide the search
for anomalous observations. Indeed, while looking over a set of observations
to discover outliers, it often happens that there is some qualitative description
of the domain of interest encoding what an expected normal behavior should
be. This description might be, for instance, derived by an expert and might
be formalized by means of a suitable language for knowledge representation.
With this aim, in (Angiulli et al, 2007, 2008) a notion of outlier in the con-
text of default reasoning and logic programming is presented, definition which
exploits the deduction mechanism in order to single out outliers.

In the context above delineated, that is incorporating domain knowledge
in the outlier mining task, we take the opposite perspective and present a
definition of outlier which exploits induction in order to perceive the anomaly
of an observation. Given a domain knowledge and a set of positive and negative
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examples from a concept, the definition aims at singling out the examples
showing exceptional behavior. The method is an unsupervised one, since there
are no examples of normal/abnormal behavior, even if it has connections with
supervised learning, since it is based on induction from examples which are
instances of a concept.

In particular, the definition distinguishes among three kinds of abnormali-
ties, that are irregular, anomalous, and outlier observations. This allows us to
provide a finer characterization of the anomaly at hand and to single out more
subtle forms of anomalies. Moreover, we are also able to provide explanations
for the abnormality of an observation, in the form of a pair of logic programs,
which make more intelligible the motivation underlying its exceptionality.

As a tool of concept learning based on logic programs (that is to say, set
of first-order rules), we consider the field of Inductive Logic Programming
(ILP), which aims at inducing descriptions of data in the form of logic pro-
grams (Lavrac̆ and Dz̆eroski, 1994). During recent years, ILP has shown its
application potential in many fields, such as knowledge discovery in databases,
relational data mining, bioinformatics, and others.

We present three algorithms for detecting Concept-Based outliers. The first
algorithm, named CBOut, returns all and only the abnormal sets but may have
large time requirements, while the other two algorithms, named hCBOut and
aCBOut, greatly reduce execution time while guaranteeing good accuracy.

We discuss differences with noise-handling mechanisms, pointing out that
the task here pursued is different from noise removal, since the anomalous ob-
servations we discover are different in nature from noisy ones. We also discuss
differences with methods presented in (Angiulli et al, 2007, 2008), highlight-
ing that the latter ones do not make sense in the context of positive logic
programs, which is the framework here considered. Moreover, we discuss ex-
amples of knowledge mined and compare our approach with alternative ones.

The rest of the paper is organized as follows. Section 2 presents basic
notions of Logic Programming and Concept Learning. Section 3 provides the
formal definition of Concept-Based outlier. Section 4 describes the CBOut
algorithm for mining outliers. Section 5 presents approximate variants of the
CBOut algorithm for dealing with complex background theories and large
set of examples. Section 6 discusses relationships and differences with related
work. Section 7 reports results obtained by experimenting the approach here
introduced. Finally, Section 8 draws conclusions of the work.

2 Preliminaries

In this section we recall some preliminary notions about Logic Programming,
Concept Learning and Inductive Logic Programs.

2.1 Logic Programming

Next, we recall some basic concepts about Logic Programming.
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A term is a constant or a variable. An atom is an expression of the form
p(t1, ..., tk) where p is a (k-ary) predicate symbol and t1, ..., tk are terms.

A Horn clause, or simply clause, is an expression of the form T ← Q
where T is an atom and Q is a, possibly empty, conjunction of atoms, written
Q ≡ A1, . . . , An, with Ai an atom (n ≥ 0 and 1 ≤ i ≤ n). If Q is empty
(n = 0), then the clause is said a fact, also denoted simply as T .

A Logic Program P is a finite set of clauses.

The Herbrand Universe UP of a program P is the set of all constants
appearing in P , and its Herbrand Base BP is the set of all ground atoms that
can be obtained by combining the predicate symbols appearing in P and the
constants from UP . A ground term (resp. an atom, a clause or a program) is
a term (resp. an atom, a clause or a program) where no variables occur. The
set of all ground instances of the rules in P is denoted by ground(P ).

An interpretation of P is any subset of BP . The truth value of an atom
a w.r.t. an interpretation I, denoted valueI(a), is true if a ∈ I and false
otherwise. The truth value of a conjunction of ground atoms F ≡ a1, . . . , an,
denoted as valueI(F ), is true if valueI(ai) = true for each 1 ≤ i ≤ n, false
otherwise. If F is empty then valueI(F ) = true.

A ground clause c : T ← Q is satisfied by the interpretation I if (i)
valueI(Q) = false or (ii) valueI(Q) = true and valueI(T ) = true. Thus,
if Q is empty then c is satisfied by I if valueI(T ) = true. An interpretation
M for P is a model of P if M satisfies all clauses in ground(P ).

A logic program P entails a ground atom f (or, equivalently, f is entailed
by P ), written P |= f , if and only if f is true in each model of P . Otherwise,
f is not entailed by P , written P 6|= f .

It can be shown that MP
0 =

⋂
iMP

i , the intersection of all models MP
i

of the logic program P , is a model of P too, called the minimal model of P
(since no proper subset ofMP

0 is a model of P ). This model has the important
property that P |= f , with f a ground atom, if and only if f ∈ MP

0 (Lloyd,
1987).

A substitution θ = {X1/t1, . . . , Xk/tk} is a mapping from variables to
terms. The application of a substitution θ to a conjunction of atoms F , denoted
as Fθ, is obtained by replacing each occurrence of the variable Xi in F with
the term ti, for each 1 ≤ i ≤ n.

Let P be a logic program, a clause c : T ← Q of P covers a ground atom f
if there exists a substitution θ, such that Tθ = f and Qθ ⊆ MP

0 , where MP
0

is the minimal model of P . The set of ground atoms covered by c is denoted
as covers(c). The coverage notion can be extended to a set of clauses: if C is
a set of clauses, covers(C) is the union of the set of ground atoms covered by
the clauses in C. Let E be a set of ground atoms. In the following, coversE(C)
denotes the set covers(C)∩E. By definition, we assume that coversE(∅) = E.

Given a logic program P and a set of ground atoms E, the restriction P (E)
of P to E is the logic program P (E) = {c ∈ P | coversE({c}) 6= ∅} composed
of the clauses c in P such that coversE({c}) is not empty.
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2.2 Concept Learning

Next, basic definitions about Concept Learning and Inductive Logic Program-
ming (ILP) can be provided.

Let U be an universal set of observations, also called objects or instances. A
concept C is a subset of U . A concept can be described extensionally (by listing
its instances) or intensionally (by giving a concise description of the concept
in terms of rules). The dual concept C of C is the concept U \C. Sometimes we
will call C the direct concept in order to differentiate it from its dual one C.

The Inductive Concept Learning aims to learn an intensional description of
a specific concept by induction from some given instances and non-instances
of the concept at hand. The instances of the concept to be learned are called
positive examples, whereas the non-instances are called negative examples. The
induced description is also called hypothesis.

The inductive learning may often exploit not only the examples but also
some prior knowledge in order to build a more concise description of the con-
cept. This knowledge is called background knowledge or, equivalently, back-
ground theory.

Inductive Logic Programming (ILP) is a branch of the inductive concept
learning where the objects, the hypothesis and the background knowledge are
all expressed in terms of logic programs.

In particular, the concept to be learned is a predicate, referred to as target
predicate, the objects are ground facts, the background knowledge and the
hypothesis to be induced are logic programs.

A set of examples E is a set of ground atoms that can be partitioned in two
subsets, that are E+, the set of positive examples, and E−, the set of negative
examples.

For example, consider the concept “transport by land” encoded by means of
the unary target predicate transport by land. The following is a set of positive
and negative examples pertaining to this concept:

E+ =



transport by land(bike).
transport by land(motorbike).
transport by land(car).
transport by land(jeep).
transport by land(truck).
transport by land(bus).
transport by land(hovercraft).

E− =


transport by land(airplane).
transport by land(seaplane).
transport by land(airship).
transport by land(helicopter).

As already noticed, other than a set of examples, usually also a background
knowledge B is available. A possible background knowledge associated with the
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“transport by land” concept is reported next.

B =



has propeller(hovercraft).
has propeller(airplane).
has propeller(seaplane).
has propeller(helicopter).
has propeller(airship).

has steering wheel(car).
has steering wheel(truck).
has steering wheel(bus).
has steering wheel(jeep).

travels on wheels(motorbike).
travels on wheels(bike).

vertical take off(helicopter).
vertical take off(airship).

has wings(airplane).
has wings(seaplane).

travels on wheels(X)← has steering wheel(X).

The problem that ILP is interested in solving can be stated as follows:
Given a set of examples E and a background knowledge B, find a hypothesis
HEB, also said hypothesis on E w.r.t. B, such that HEB ∪B entails the examples
in E; namely:

1. for each e ∈ E+, e ∈ covers(HEB ∪ B) or, equivalently, HEB ∪ B |= e (com-
pleteness), and

2. for each e ∈ E−, e 6∈ covers(HEB ∪ B), or, equivalently, HEB ∪ B 6|= e (con-
sistency).

It has been shown that the ILP problem is undecidable in the general
case (Plotkin, 1971). Thus, in the literature, different heuristic systems have
been introduced for determining a sub-optimal solution to the ILP problem,
among the others, GOLEM (Muggleton and Feng, 1990), FOIL (Quinlan and
Cameron-Jones, 1993), and PROGOL (Muggleton, 1995).

Consider again the concept “transport by land”. Starting from the set of
examples and the background theory above reported, the following hypothesis
can be suitably induced:

HEB =

{
transport by land(X)← travels on wheels(X).

transport by land(hovercraft).

3 Detecting Outliers through Concept Learning

In this section we formally define the Concept-Based outlier detection problem.
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3.1 Preliminary definitions

In order to define the outliers, we introduce some preliminary notions.

Definition 1 (Coverage) Let C be a set of clauses and let E be a set of
examples. Then the coverage covE(C) of C in E is the following function:

covE(C) =
1

|E|

(∏
c∈C
|coversE(c)|

) 1
|C|

. (1)

By definition, we assume that covE(∅) = 1.

Intuitively, the coverage of a set of clauses in a set of examples measures how
many examples of the set are covered in average by the clauses. In particular,
the definition of coverage here provided is based on the geometric mean in
order to penalize the presence of rules covering few examples. We will employ
the coverage as a measure of the generalization of a set of clauses.

Definition 2 (Gain) Given two sets of clauses C1 and C2 and a set of ex-
amples E , the gain gainE(C1, C2) of C1 over C2 in E is defined as

gainE(C1, C2) = covE(C1)− covE(C2).

A positive gain means that the clauses in C1 averagely cover a larger number
of examples in E than the clauses in C2. Intuitively, this means that the clauses
in C1 can be considered more general than those in C2.

Given a set of examples E and a nonempty subset O of E we say that O is
pure if either O ⊆ E+ or O ⊆ E− hold.

Definition 3 (Compliance) Given a background knowledge B, a set of ex-
amples E , and a pure subset O of E , we say that O α-complies (or, simply,
complies) with E ∪ B, written E ∪ B  O, if

gainE+\O

(
HE\OB ,HEB

)
< α,

where α is an user-provided ral number in [0, 1]. Otherwise, we say that O
does not comply with E ∪ B, written E ∪ B 6 O.

Intuitively, if a subset of examples does not comply with a background theory
and the whole set of examples, then this means that the hypothesis induced in
absence of this subset is significantly more general than the hypothesis induced
when the examples are seen.

Now, we introduce the notion of dual set of examples. Given a set of ex-

amples E , the dual set E of E is the set of examples E such that E +
= E− and

E − = E+. Note that by using E as set of examples, the dual concept C of C is
learned, where C is the concept of which the examples in E are instances.

Let p denote the target predicate symbol. When the dual concept is learned,
for the sake of clarity, we will employ in the induced hypothesis the predicate
symbol not p instead of p, in order to emphasize the fact that the dual concept
has been learned.
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3.2 Defining abnormal examples

Before providing the definition of abnormal observation, the intuition underly-
ing the approach that will be pursued here is informally illustrated by means
of an example.

Consider the concept “transport by land” described in Section 2.2 and,
moreover, consider the set O = {transport by land(hovercraft)} consisting
on the positive example transport by land(hovercraft). As already shown
before, the induced hypothesis associated with this concept is

HEB =

{
transport by land(X)← travels on wheels(X).

transport by land(hovercraft).

Noticeably, the example transport by land(hovercraft) appears as a fact in
HEB, while the remaining part of the theoryHEB consists of a single rule covering
any other positive example.

Intuitively, this kind of knowledge suggests that, unlike the rest of the
positive examples, the example transport by land(hovercraft) is hard to be
covered and, hence, does not comply very well with the normal behavior of
the concept. As a matter of fact, among the examples appearing in the set of
positive examples, the hovercraft is the only vehicle moving on land which is
not equipped with wheels. Indeed, differently from any other vehicle traveling
over land, the hovercraft is the only that exploits an air-cushion in order to
move on surfaces. This kind of abnormal behavior is witnessed by the hypoth-
esis induced in absence of the positive examples in O, which is more compact
than the original one, consisting of the following single rule:

HE\OB =
{
transport by land(X)← travels on wheels(X).

A set of observations O like the one above commented on will be referred to
as irregular in the following.

In order to properly characterize the exceptionality of the set O, the dual
concept “not transport by land” has to be taken into account. Specifically,

the hypothesis HEB induced on the target predicate not transport by land by
considering the dual set of examples E is reported next:

HEB =

{
not transport by land(X)← has wings(X).

not transport by land(X)← vertical take off(X).

Indeed, the negative examples are vehicles traveling by air which can be par-
titioned in two sets: some of them have wings, while some others are aircrafts
that take off and land vertically. Interestingly, also the dual hypothesis induced
in absence of the examples in O is more compact than the original one, since
it consists of the following single rule:

HE\OB =
{
not transport by land(X)← has propeller(X).



Exploiting Domain Knowledge to Detect Outliers 9

a

b c d

e f g

h

j

k

lm

n

r

s

q

u

t

v

w
zo xy

p

Fig. 1: Example theory.

As a matter of fact, while the hovercraft is the only positive example having
a propeller, all the negative examples have a propeller. Hence, the presence
of the example hovercraft prevents the above rule to be induced in the orig-
inal dual theory. Intuitively, this kind of situation witnesses that O does not
comply very well with the normal behavior of the dual concept, so that there
are some difficulties to recognize the hovercraft as a non-instance of the con-
cept “transport by land”. In the following, we will call anomalous such an
observation.

Having provided the intuition underlying the approach here pursued to
perceive outliers, the rest of the section aims to define a way to measure the
compliance of a set of examples to a hypothesis and to exploit it in order to
properly formalize the notion of irregular and abnormal set of examples.

3.3 Abnormal examples

Given a pure subset of examples O of E , we argue that the compliance of these
examples with E ∪ B and E ∪ B can be exploited in order to understand if the
set O contains abnormal observations.

In order to illustrate the concepts that will be defined in this section, we
make use of an example.

Example 1 Let E = E+ ∪ E− be a given set of examples, where

E+ = {tp(a), tp(b), tp(c), tp(d), tp(e), tp(l), tp(m), tp(o), tp(x), tp(y), tp(z)},
E− = {tp(f), tp(g), tp(h), tp(j), tp(k), tp(n)},
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and let

B = {p(o), p(x), p(y), p(z), q(a), q(b), q(c), q(l), q(m),

r(f), r(g), r(n), s(e), s(f), s(g), s(h), s(n),

t(c), t(d), u(e), u(o), v(b), v(j), v(k),

w(m), w(l), w(x), w(y), w(z)}

be a given background knowledge. Figure 1 shows the examples in E and the
subsets covered by each predicate in the background theory.

Let the induced hypothesis HEB be (throughout the paper, we report be-
tween angle brackets the number of examples covered by each clause):

HEB =


c1 ≡ tp(X)← q(X) 〈5〉
c2 ≡ tp(X)← w(X) 〈5〉
c3 ≡ tp(X)← u(X) 〈2〉
c4 ≡ tp(X)← t(X) 〈2〉

and the induced dual hypothesis HEB be:

HEB =


c1 ≡ not tp(X)← r(X) 〈3〉
c2 ≡ not tp(h) 〈1〉
c3 ≡ not tp(j) 〈1〉
c4 ≡ not tp(k) 〈1〉

For the sake of simplicity, assume that O is a subset of E+. As already said,
if the set O does not comply with E ∪ B, then the description of the concept
would be significantly more concise if each example in O were not observed.
Hence, intuitively, we can say that the examples in O are likely to do not
match regularities joining the remaining instances of the concept. In order to
better understand the kind of irregularity represented by the examples in O,
the compliance of O with E ∪B has to be investigated. In particular, if O does
not comply with E ∪ B, but O complies with E ∪ B, then the description of
the concept would be significantly more concise if each example in O were not
observed, whereas the dual description of the concept is not affected by the set
of examples O. Thus, in this case the examples are hard to be covered since
we can imagine they are “far away” the majority of the positive examples and
also “far” form the negative ones. We identify these examples as irregular.

Definition 4 (Irregular set) Given a background knowledge B, a set of
examples E , and a subset O of E+ (E−, resp.), we say that O is irregular in
E ∪ B if E ∪ B 6 O (E ∪ B  O, resp.) and E ∪ B  O (E ∪ B 6 O, resp.).

Example 1 (continued). Assume α is set to 0.05 and consider the set O =
{tp(d)}. We note that the set O is irregular. Indeed, E ∪ O 6 {tp(d)}, since

if {tp(d)} were not seen then the induced theory HE\OB would not contain

c4, being more concise. In particular, covE+\O(HEB) =
4√5·5·2·1

10 = 0.27, while

covE+\O(HE\OB ) =
3√5·5·2
10 = 0.37, and the gain is 0.10.
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Conversely, consider the set O which is a subset of the negative examples

in E for the dual concept. Notice that E ∪ B  O, since HE\OB is not affected
by the absence of O (the gain is zero).

A similar line of reasoning can be employed if O does not comply with
E ∪ B. In particular, if O does not comply with E ∪ B and O complies with
E ∪ B, then the examples in O well fit the concept to be learned, but they
also have some commonalities with the dual concept, so that it is very difficult
to discriminate them from a non-instance. In this case the description of the
dual concept would be significantly more concise if each example in O were
not observed. Hence, we call these examples anomalous.

Definition 5 (Anomalous set) Given a background knowledge B, a set of
examples E , and a subset O of E+ (E−, resp.), we say that O is anomalous in
E ∪ B if E ∪ B  O (E ∪ B 6 O, resp.) and E ∪ B 6 O (E ∪ B  O, resp.).

Example 1 (continued). Consider now the set O = {tp(b)}. This set is anoma-

lous. Indeed, E ∪ B  tp(b) since the hypothesis HE\OB induced in absence of
O coincides with HEO.

Conversely, consider the set O which is a subset of the negative examples in
E for the dual concept. We note that E ∪B 6 O, since if O were not seen then

the induced dual hypothesisHE\OB would contain the clause not tp(X)← v(X)

instead of the facts c3 and c4. In fact, covE+(HEB) =
4√3·1·1·1

6 , covE+(HE\OB ) =
3√3·2·1

6 , and the gain is 0.08.

Assume now that O does not comply with E ∪B and also that O does not
comply with E ∪B. In this case, both the description of the concept C and the
description of the dual concept C would benefit if the examples in O and in
O, respectively, were not observed. We can imagine that these examples are
hard to be covered, since they lie either very close or even within the “shape”
of the dual concept, and we identify these examples as outliers.

Definition 6 (Outlier set) Given a background knowledge B, a set of exam-
ples E , and a pure subset O of E , we say that O is outlier in E ∪B if E ∪B 6 O
and E ∪ B 6 O.

Example 1 (continued). The set O = {tp(e)} is an outlier. Indeed, E ∪ B 6 
{tp(e)}, since if O were not seen then the induced theory HE\OB would con-
tain the clause tp(X) ← p(X) instead of c2 and c3, being more concise. In

particular, covE+\O(HE\OB ) =
3√5·4·2
10 , covE+\O(HEB) =

4√5·5·2·1
10 and the gain is

0.08.
Moreover, E ∪ B 6 O, since if {not tp(e)} were not seen then the induced

dual theory HE\OB would contain the clause not tp(X) ← s(X) instead of c1

and c2. In particular, covE+(HE\OB ) =
3√5·1·1

6 and covE+(HEB) =
4√3·1·1·1

6 , and
the gain is 0.07.
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O ⊂ E pure E ∪ B  O E ∪ B 6 O

E ∪ B  O normal
anomalous (positive)
irregular (negative)

E ∪ B 6 O irregular (positive)
outlier

anomalous (negative)

Table 1: The different kinds of abnormal examples.

A pure set of examples O such that both E ∪ B  O and E ∪ B  O
hold is said to be normal, otherwise it is said to be abnormal. Abnormal set of
examples can be partitioned into outlier, irregular and anomalous examples,
according to what aforesaid.

Dually, the same line of reasoning can be adopted to define abnormal ex-
amples if a subset O of negative examples is considered. Table 1 summarizes
the different kinds of abnormal example sets that have been defined.

Before concluding we discuss the rationale for defining an abnormality
as a set. In some cases two or more related individuals should be removed
simultaneously in order to improve generalization of the induced hypothesis. If
this happen, then these individuals share some common exceptional properties,
which could not be discovered if the instances were considered individually,
and then they form all together an abnormal set.

3.4 Statement of the Problem

In this section we define the outlier detection problem in the context of Induc-
tive Logic Programming.

First of all, we introduce an alternative notion of compliance which is based
on the previous one, but presents some advantages which will be discussed in
the sequel of the section. Intuitively, the novel definition of compliance focuses
on the portion of the theory involving the examples in O.

For the sake of simplicity, let O be a set of positive examples and consider
the theory HEB induced in presence of O. The set of clauses in HEB can be
partitioned in two groups, that are the clauses in HEB(O) that cover some of
the examples in O, and the remaining ones, that are the clauses inHEB\HEB(O).

We call starting theory the former one, since it builds on the examples in
O, while we note that the latter piece of theory does not directly build on the
examples in O.

As for the set of examples, it can be partitioned in three sets, that are
the examples in O, the examples Ô not in O and covered only by clauses in
HEB(O), and the remaining ones.

Consider now the theory HE\OB induced in absence of O. In this case, the
piece of theory which is directly affected by the absence of the examples in O
is that composed of the clauses that cover some of the examples in Ô (recall
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that these examples are those not covered by the clauses in HEB \ HEB(O)).
Hence, we name ending theory the above described theory.

We can now redefine the compliance by exploiting the gain of the ending
theory over the starting theory in E+ \O. The formal definition of compliance
is reported in the following.

Definition 7 (Compliance) Given a background knowledge B, a set of ex-

amples E , and a pure subset O of E , let Ê denote E+ \ O. We say that O
α-complies (or, simply, complies) with E ∪ B, written E ∪ B  O, if

gainÊ

(←−
HEB(O),

−→
HEB(O)

)
< α,

holds, where the theories
−→
HEB(O) (the starting theory) and

←−
HEB(O) (the ending

theory), are defined as follows:

Positive examples: ifO ⊆ E+, then
−→
HEB(O) isHEB(O) and

←−
HEB(O) isHE\OB (Ô),

where Ô is
coversÊ

(
HEB
)
\ coversÊ

(
HEB \ HEB(O)

)
,

that is the set of examples in Ê covered only by clauses of HEB that cover
some examples in O;

Negative examples: if O ⊆ E−, then
←−
HEB(O) is HE\OB (O) and

−→
HEB(O) is

HEB(Ô), where Ô is

coversÊ

(
HE\OB

)
\ coversÊ

(
HE\OB \ HE\OB (O)

)
.

that is the set of examples in Ê = E+ covered only by clauses of HE\OB that
cover some examples in O.

Next, an example of outlier set follows.

Example 1 (continued). Consider the outlier set O = {tp(e)}. Then the start-

ing theory
−→
HEB(O) is HEB(O) = {c3} and, moreover, Ô is

coversE+\{tp(e)}({c1, c2, c3, c4}) \ coversE+\{tp(e)}({c1, c2, c4})

that is {tp(o)}. Let the theory HE\OB induced in absence of O be

HE\OB =

 c′1 ≡ tp(X)← q(X) 〈5〉
c′2 ≡ tp(X)← p(X) 〈4〉
c′3 ≡ tp(X)← t(X) 〈2〉

Then the ending theory
←−
HEB(O) is HE\OB (Ô) = {c′2}, and the gain is 4

10 −
1
10 =

0.30.
As for the dual concept, O, let the theory HE\OB induced in absence of O

be

HE\OB =

 c′1 ≡ not tp(X)← s(X) 〈4〉
c′2 ≡ not tp(j) 〈1〉
c′3 ≡ not tp(k) 〈1〉
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Then the ending theory
←−
HEB(O) is HE\OB (O) = {c′1}. The set Ô is

coversE−({c′1, c′2, c′3}) \ coversE−({c′2, c′3}),

that is the set consisting of the examples f , n, g, and h. The starting theory
−→
HEB(O) is HEB

(
Ô
)

= {c1, c2}, and the gain is 4
6 −

√
3·1
6 = 0.38.

Next, it is shown an example of irregular set.

Example 1 (continued). Consider the irregular set O = {tp(d)}. In this case,

the starting theory is {c4}, Ô is empty, and also the ending theory is empty.
Then the gain is given by

covE+\{tp(d)}(∅)− covE+\{tp(d)}({c4}),

and is equal to 1− 1
10 = 0.90 (we recall that covE(∅) = 1 by definition).

Now we discuss the advantages of the novel definition of compliance. First,
we note that the starting theory and the ending theory associated with the ab-
normal set of examples play the role of explanation for its abnormality. Indeed,
since these portions of knowledge are related to the presence/absence of the
abnormal set, by comparing them the analyst can understand the motivation
underlying the abnormality of the example set.

With this aim, if O (O, resp.) does not comply with E ∪ B, then we call

direct (dual, resp.) explanation the pair (
−→
HEB(O),

←−
HEB(O)) ((

−→
HEB(O),

←−
HEB(O)),

resp.), also said the direct (dual, resp.) starting/ending theories associated

with O (O, resp.) in HEB (HEB, resp.).

Second, comparing only two pieces of theories related to the abnormal set
is more meaningful than comparing the two full theories and, moreover, this
kind of comparison makes the definition less sensitive to global changes.

Before providing the formal definition of outlier problem, it is needed to
note that abnormal sets should adhere to two additional requirements. First,
they should be small, that is the size of the abnormal set should not exceed
few units, since outliers are naturally either single instances or at most small
groups of instances. Second, the abnormal sets should not contain unnecessary
instances. This can be obtained by requiring that these sets are minimal with
respect to the property of being abnormal.

Now we are in the position of formally defining the Concept-Based Outlier
Detection problem.

Definition 8 (Concept-Based Outlier Detection Problem) Given a back-
ground knowledge B, a set of examples E , and a maximum size kmax, find the
minimal irregular, anomalous and outlier subsets O of E of size not exceeding
kmax, together with their associated explanations.
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Algorithm: CBOut(B, E , α, kmax)

1: Out← ∅
2: Anom← ∅
3: Irr← ∅
4: find the hypothesis H0 ←HEB
5: find the hypothesis H0 ←HEB
6: let Cand1 ← {{e} | e ∈ E}
7: for k = 1 to kmax do
8: let NextCandk ← ∅
9: foreach O in Candk do

10: if O ⊆ E+ then

11: let 〈H+
s ,H+

e , g
+〉 ← Gain+(H0,B, E,O)

12: let 〈H−s ,H−e , g−〉 ← Gain−(H0,B, E,O)

13: else

14: let 〈H−s ,H−e , g−〉 ← Gain−(H0,B, E,O)

15: let 〈H+
s ,H+

e , g
+〉 ← Gain+(H0,B, E,O)

16: if g+ ≥ α and g− ≥ α then

17: Update(Out, 〈O, (H+
s ,H+

e ), (H−s ,H−e )〉)
18: else
19: if g+ ≥ α then

20: Update(Irr, 〈O, (H+
s ,H+

e )〉)
21: else if g− ≥ α then

22: Update(Anom, 〈O, (H−s ,H−e )〉)
23: let NextCandk ← NextCandk ∪ {O}

24: let Candk+1 ← GenerateCand(NextCandk)

25: return 〈Out, Irr, Anom〉

Fig. 2: The CBOut algorithm.

4 CBOut Algorithm

In this section we present the CBOut algorithm for mining the Concept-Based
outliers. The pseudo-code of the algorithm is reported in Figure 2. It takes
as input a background theory B, a set of examples E , and two user-defined
parameters, that are α, the gain threshold, and kmax, the maximum size of
an anomalous set to be found. It outputs three sets, that are, Out, containing
the outlier sets in B∪E , Irr, containing the irregular sets in B∪E , and Anom,
containing the anomalous sets in B ∪E . Each abnormal set is accompanied by
its explanation.

First of all, the algorithm finds the hypothesis HEB and the dual hypothesis

HEB (lines 4-5).

The method visits the pure subsets of examples consisting of at most
kmax elements in a bottom-up manner. In particular, during the k-th (k =
1, 2, . . . , kmax) iteration (lines 7-24) only subsets of examples of size k are con-
sidered. The sets taken into account are those stored in the set Candk, which
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Function Gain+(H, B, E , O)

1: let H1 ←H(O) // starting theory

2: find the hypothesis H2 ←HE\OB
3: let Ê ← E+ \ O
4: let Ô ← coversÊ(H) \ coversÊ(H \H1)

5: let H3 ←H2(Ô) // ending theory
6: return 〈H1,H3, gainÊ(H3,H1)〉

Function Gain−(H, B, E , O)

7: find the hypothesis H2 ←HE\OB
8: let H3 ←H2(O) // ending theory

9: let Ê ← E+

10: let Ô ← coversÊ(H2) \ coversÊ(H2 \ H3)

11: let H1 ←H(Ô) // starting theory
12: return 〈H1,H3, gainÊ(H3,H1)〉

Fig. 3: Gain+ and Gain− functions.

consists in all the potential minimal abnormal sets of size k. The set Cand1
contains |E| singleton sets {e}, one for each example e occurring in E (line 6).

The functions Gain+ and Gain− (see Figure 3) are used to test compliance
according to Definition 7. In particular, Gain+ (Gain−, resp.) takes as input
an hypothesis H, a background theory B, a set of examples E , and a subset O
of the positive (negative, resp.) examples in E , and returns the starting and
ending theories associated with O and the associated gain.

For each set O stored in Candk, the direct and dual starting and ending
theories are computed together with the associated gain values (lines 11-12, for
O a set of positive examples, and lines 14-15, for O a set of negative examples).
In particular, for O being a set of positive examples, the direct starting H+

s

and ending H+
e theories with the associated the gain g+ are computed by

using the Gain+ function (line 11), while the dual starting H−s and ending
H−e theories with the associated gain g− are computed by using the Gain−

function (line 12). Conversely, for O being a set of negative examples, the
direct starting H−s and ending H−e theories with the associated gain g− are
computed by using the Gain− function (line 14), while the dual starting H+

s

and ending H+
e theories with the associated gain g+ are computed by using

the Gain+ function (line 15).

Once the gains are computed, it is checked whether the set is abnormal
or not. In particular, if g+ or g− exceeds α, the set O is abnormal and it is
inserted, together with the associated explanation, in Out, Irr, or Atom, on
the basis of the kind of abnormality. For minimality, if O is irregular (anoma-
lous, resp.), it is inserted in Irr (Anom, resp.) provided that a subset of O is
not already present in Irr (Anom, resp.). Moreover, if O is not an outlier set,
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it is stored in NextCandk in order to be exploited to generate the potential
abnormal sets for the next iteration.

Note that, at the end of the current iteration, NextCandk contains all
the non-outlier sets having size k. In order to build the candidate minimal
abnormal sets of size k + 1, it is needed to find the pure subsets of examples
of size k + 1 such that all their subsets of size k occur in NextCandk. This is
taken care of by function GenerateCand (line 24).

At the end of the main cycle, the sets Out, Irr, and Anom contain all the
minimal outlier, irregular, and anomalous set, respectively, in B∪E of size not
greater than kmax.

4.1 Computational complexity

In this section we analyze the temporal cost of the CBOut algorithm. We
employ the following notation:

– h, denotes the maximum number of clauses in an induced hypothesis; and
– Cind(B, E), denotes the cost required to induce the hypothesis HEB from the

background knowledge B and the set of examples E .

W.l.o.g., we assume that the inductor outputs, together with the induced hy-
pothesisHEB, the sets coversE(c) of examples covered by each clause c belonging
to HEB.

First of all, the algorithm induces the hypothesis H0 and H0 (lines 4-5
of Figure 2), a step which costs O(Cind(B, E)). Next, the pure subsets of at
most kmax elements are considered. The maximum number of pure subsets is( |E|
kmax

)
and, then, O

(
|E|kmax

)
. For each pure subset, the dominant operations

are the computation of the Gain+ and Gain− functions, whose costs are made
explicit next.

In order to evaluate the Gain+ function (see Figure 3), the first step is
to compute the starting theory (line 1), which corresponds to find the clauses
covering some examples of O. Since the maximum number of clauses is h, the
cost required to compute the starting theory is O(h|E|), corresponding to the
cost of determining whether the set of examples covered by a clause has as
elements some examples of O.

The next step consists in inducing an hypothesis (line 2) by considering
a reduced set of examples, and the associated cost is Cind(B, E). As for the
cost of evaluating the covers functions in line 4, it corresponds to the cost
of finding the subset of Ê covered by some clauses in H and, then, it requires
O(|E|) elementary operation for each clause of H. Thus, the total cost required

to compute the set Ô is O(h|E|).
The cost of computing the ending theory (line 5) is the same of that of

computing the starting theory, that is O(h|E|). As for the last step (line 6),
the gain function has to be evaluated. On the basis of Equation 1, the cost
of computing the gain function corresponds to the cost of computing twice
the cov function. The cov function multiplies h factors and, then, its cost is
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O(h). Therefore, the total cost required to compute the Gain+ function is
O
(
Cind (B, E) + h|E|

)
.

As far as the Gain− function is concerned, its cost is also O
(
Cind (B, E) +

h|E|
)

and it can be obtained by following a line similar to that employed for
the Gain+ function.

Concluding, the cost required by the CBOut algorithm to perform its op-
erations is

O
(
|E|kmax ·

(
Cind(B, E) + h|E|

))
.

5 Dealing with Complex Domains

When large example sets and background theories are taken into account, the
temporal cost of the CBOut algorithm may become heavy. Thus, in order to
made the approach here presented feasible on large and real-life domains, in
this section we introduce two variants of the basic CBOut algorithm, namely
hCBOut and aCBOut. The goal of both methods is to reduce the compu-
tational effort while maintaining a good accuracy, but they present different
characteristics and are suitable for different scenarios.

The hCBOut variant (for Heuristic CBOut) is designed to alleviate the
cost of CBOut in domains where a few hundreds examples are available, pos-
sibly together with complex background theories. Intuitively, hCBOut adopts
a criterion to select some examples as candidate to form an abnormal set and
then explores the power set of this set of candidate examples by using the same
strategy of CBOut. hCBOut is consistent (that is, the sets returned are actu-
ally abnormal), but not complete (that is, it could not return all the abnormal
sets).

The aCBOut variant (for Approximate CBOut) is designed to make fea-
sible the search for abnormal sets in domains where large set of examples are
available. To considerably improve efficiency, aCBOut adopts a criterion to
directly select some candidate abnormal set of examples and then checks for
their abnormality. Similarly to hCBOut, aCBOut is consistent and incomplete.
Morever, its solutions could not be minimal with respect to the containment
between abnormal sets.

The rest of the section presents in detail the hCBOut (Section 5.1) and
aCBOut (Section 5.2) algorithms.

5.1 Heuristic CBOut algorithm

Basically, the hCBOut algorithm (for Heuristic CBOut) is based on the selec-
tion of a subset ECand of the input set of examples E to be used as candidate
abnormal examples by the outlier detector algorithm, with |ECand| � |E|,
which allows to reduce the overall cost of the mining algorithm to

O
(
|ECand|kmax ·

(
Cind(B, E) + h|E|

))
.
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The selection of the candidate examples is accomplished by exploiting suitable
scoring functions introduced next. Informally speaking, the scoring functions
assign to each example a score aiming at reflecting its propension to represent
an irregular or an anomalous fact. Examples are then ranked on the basis of
these scoring functions, and the top ranked examples are collected to form the
set ECand of the candidate abnormal examples.

First, Sections 5.1.1, 5.1.2, and 5.1.3 introduce, respectively, some prelim-
inary definitions, the irregularity, and the anomaly score functions and, then,
subsequent Sections 5.1.4 and 5.1.5 describe how these scores can be exploited
in order to build the set of candidate abnormal examples and the hCBOut
algorithm.

5.1.1 Similarity between clauses and score function

Some preliminary definitions are needed in order to provide the irregularity
and the anomaly score. Let C be a set of clauses and E be a set of examples.
The set edgesC(e) of edges of e in C, is composed of the clauses of C that
cover at least e, that is to say

edgesC(e) = {c ∈ C : e ∈ coversE(c)},

while the set neighsC,E(e) of neighbors of e in E according to C, is composed
of the examples of E that share at least an edge in C with e, that is:

neighsC,E(e) = {e′ ∈ E : edgesC(e) ∩ edgesC(e′) 6= ∅}.

Let c and c′ be two clauses. Then, the similarity simE(c, c′) between c and c′

w.r.t. the set of examples E is defined as

simE(c, c′) =
|coversE(c) ∩ coversE(c′)|

1 + |coversE(c) ∆ coversE(c′)|
,

where ∆ denotes the symmetric difference set theoretic binary operator, that
is A∆B = (A ∪B) \ (A ∩B).

Specifically, the larger the number of examples in E common to c and c′

and the larger their similarity and, the smaller the number of examples covered
by either c or c′, but not by both of them, and the larger their similarity.

Let e be a positive (negative, resp.) example, then pose(E) denotes the set
E (E , resp.). Moreover, nege(E) denotes the set pose(E), that is E (E , resp.)
for e a positive (negative, resp.) example. The set nege(E)+ is said to be the
set of the opposite examples of e.

Given an example e, two sets of clauses C0 and C1, and a set of examples
E, the function scoreC0,C1,E(e) is defined as:

scoreC0,C1,E(e) =∑(
c∈edgesC1

(e)
) ∑(

e′∈neighsC1,E(e)
) ∑(

c′∈edgesC0
(e′)
) |coversE(c) ∩ coversE(c′)|
|coversE(c) ∆ coversE(c′)|+ 1

.
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The above defined function is used in the following in order to define the
irregularity and anomaly score functions. Intuitions underlying this score are
discussed next.

Here, the computational effort of evaluating the score function is analyzed.
First of all, the cost of the functions therein employed is depicted. The cost
of computing the set edgesC(e) is linear in |C|, since for each clause c ∈
C it must be checked if e belongs to the set of examples covered by c. As
for the neighsC,E(e) set, the cost of computing it corresponds to the cost
of computing the union of the sets of examples covered by the clauses in
edgesC(e) and then it is O(|edgesC(e)| · |E|) = O(|C| · |E|). The cost of the
similarity simE(c, c′) between two clauses c and c′ corresponds to the cost
of computing the intersection and the symmetric difference of two sets of
examples. Since the size of each set is O(|E|), the similarity function requires
O(|E|) time.

Notice that the size of the edgesC(e) sets is at most equal to the number |C|
of clauses and the size of the neighsC,E(e) set is at most equal to the number
of examples |E|. Thus, as far as the score function is concerned, in order to
evaluate it a computational effort of O(|C1|·|E|+|C0|·|E|+|C1|·|E|·|C0|·|E|) =
O(|C1| · |C0| · |E|2) is required.

5.1.2 Irregularity score function

The irregularity score function scoreir(e), next introduced, assigns to the ex-
ample e a score (a positive rational number) aiming to reflect its propension
to become part of an irregular set.

We are now in the position of defining the irregularity score scoreir. Let

Ep = pose(E), and H0 = HEpB ,

then:

scoreir(e) = scoreH0,H0,E+p (e),

that is:

scoreir(e) =
∑(

c∈edgesH0
(e)
) ∑(

e′∈neighs
H0,E+p

(e)
) ∑(

c′∈edgesH0
(e′)
) simE+p (c, c′).

Promising irregular examples e are those having associated a small value
scoreir(e).

Intuitively, irregular examples share few commonalities with the examples
coming from the same concept, and the above summation aims at providing a
way to measure this intuition.

Indeed, since the clauses belonging to the induced hypothesis HEB capture
regularities in the example set, the irregularity score relates the similarity
between two examples to the similarity among the regularities in which they
are involved.
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Fig. 4: Example for the irregularity score.

Example 2 Figure 4 reports the hypothesis HEB = {r1, r2, r3} induced on the
set of positive examples E = {a, b, c, d, e, f, g, h, i, j, l}. Consider the examples
i, j and d. Intuitively, the example d is not likely to be irregular, since it
shares commonalities with many examples and then it is expected to have a
large value of irregularity score. Conversely, example j shares commonalities
only with the example l and then it is likely to have a very small value of
irregularity score.

First of all, the similarity between the pairs of clauses belonging to HEB is:

simE(r1, r1) =
8

1
, simE(r1, r2) =

4

6
, simE(r1, r3) =

0

11
,

simE(r2, r2) =
5

1
, simE(r2, r3) =

0

8
, simE(r3, r3) =

2

1
.

Moreover, note that

edgesHEB(a) = edgesHEB(b) = edgesHEB(c) = edgesHEB(h), and

edgesHEB(d) = edgesHEB(g) = edgesHEB(e) = edgesHEB(f); then

neighsHEB,E(a) = neighsHEB,E(b) = neighsHEB,E(c) = neighsHEB,E(h), and

neighsHEB,E(d) = neighsHEB,E(g) = neighsHEB,E(e) = neighsHEB,E(f).

As far as the example d is concerned, it holds that:

edgesHEB
(d) ={r1, r2}, neighsHEB,E

(d) = {a, b, c, d, e, f, g, h, i}, and

scoreir(d) =
∑

c∈{r1,r2}

 ∑
e′∈{a,b,c,h}

∑
c′∈{r1}

simE(c, c′) +

+
∑

e′∈{d,e,f,g}

∑
c′∈{r1,r2}

simE(c, c′) +
∑

e′∈{i}

∑
c′∈{r2}

simE(c, c′)


=

∑
c∈{r1,r2}

4 · simE(c, r1) + 4 ·
∑

c′∈{r1,r2}
simE(c, c′) + simE(c, r2)

 =

≈ 97.67.
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Consider, now, the example i. It holds that:

edgesHEB
(i) ={r2}, neighsHEB,E

(i) = {d, e, f, g, i}, and

scoreir(i) =
∑

c∈{r2}

 ∑
e′∈{d,e,f,g}

∑
c′∈{r1,r2}

simE(c, c′) +
∑

e′∈{i}

∑
c′∈{r2}

simE(c, c′)

 =

= 4 ·
∑

c′∈{r1,r2}
simE(r2, c

′) + simE(r2, r2) ≈ 27.67.

Finally, for the example j it holds that:

edgesHEB
(j) ={r3}, neighsHEB,E

(j) = {j, l}, and

scoreir(j) =
∑

c∈{r3}

∑
e′∈{j,l}

∑
c′∈{r3}

simE(c, c′) = 2 · simE(r3, r3) = 4.

5.1.3 Anomaly score function

The anomaly score function, next introduced, assigns to the example e a score
(a positive rational number) aiming to reflect its propension to become part
of an anomalous set.

In order to define the anomaly score, we need to relax the consistency
property of an induced hypothesis. In particular, given a non-negative integer
%, a background theory B, and a set of examples E , we say that H̃EB,% is a
%-consistent hypothesis on E w.r.t. B, if it is complete and, moreover, for each
c ∈ H̃EB,%, it holds that |covers(c) ∩ E−| ≤ %. In the sequel, for the sake of

readability, we will denote a %-consistent hypothesis HEB,% simply as HE% , thus
omitting the specification of the background knowledge B as subscript. Clearly,
a 0-consistent hypothesis is both complete and consistent. An example e ∈ E−
such that H̃E% |= e is said to be misclassified in H̃E% .

We are now in the position of defining the anomaly score score%an. Let

En = nege(E), H0 = H̃En% , and H1 = H̃En%+1,

then

score%an(e) =

{
scoreH1,H0,En(e) , if edgesH1

(e) 6= ∅
+∞ , otherwise

where:

scoreH1,H0,En(e) =∑(
c∈edgesH1

(e)
) ∑(

e′∈neighs
H1,E+n

(e)
) ∑(

c′∈edgesH0
(e′)
) simE+n (c, c′).

The anomaly score computes the similarity, with respect to the set nege(E)+

of the opposite examples of e, among the clauses c that cover e and belong
to an inconsistent hypothesis H1 and the clauses c′ that cover the opposite
neighbors of e according to H1 and belong to its preceding hypothesis H0.
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(b) 1-consistent hypothesis.

Fig. 5: Example for the anomaly score.

Recall that H̃En%+1 is an inconsistent hypothesis on nege(E). Thus, the set of

clauses edgesH̃En%+1
(e) is non-empty if e is misclassified in H̃En%+1, and it is empty

otherwise. In the latter case the score evaluates to +∞, while in the former
one it is finite and strictly positive.

In particular, the more similar the two hypotheses, the larger the value
of the anomaly score, and the smaller the advantage of having the example
as a false negative. Vice versa, a small value for the anomaly score denotes
the presence in the inconsistent hypothesis of clauses much more general than
those already included in its preceding hypothesis. Since, intuitively, anoma-
lous examples are those preventing the induction of clauses covering much
more examples than those actually covered, the examples e having associated
a small value score%an(e) can be considered promising anomalous examples.

Example 3 Figures 5a and 5b report the consistent and 1-consistent hypothe-
ses induced on a set of examples. Consider the negative examples f and n.
Both these negative examples are covered in the 1-consistent hypothesis. In-
tuitively, the presence of n breaks a regularity among many examples, while
the presence of f avoids just one example, g, to be included in the regularity
including examples a, b, c, d and e. Thus, it is expected that the irregularity
score of n is much greater than that of f .
Consider, first, the negative example f . It holds that:

edgesH̃1
(f) ={r′1}, neighsH̃1,negf (E+)

(f) = {a, b, c, d, e, g}, and

score0an(f) =
∑

c∈{r′1}

 ∑
e′∈{a,b,c,d,e}

∑
c′∈{r1}

sim(c, c′) +
∑

e′∈{g}

∑
c′∈{r2}

sim(c, c′)

 =

= 5 · sim(r′1, r1) + sim(r′1, r2) = 5 ·
5

2
+

1

10
≈ 12.6.
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Consider, now, the negative example n. It holds that:

edgesH̃1
(n) ={r′3}, neighsH̃%+1,negn(E+)

(n) = {l,m, o, p, q}, and

score0an(n) =
∑

c∈{r′3}

 ∑
e′∈{l,m}

∑
c′∈{r3}

sim(c, c′) +
∑

e′∈{o}

∑
c′∈{r5}

sim(c, c′) +

+
∑

e′∈{p,q}

∑
c′∈{r4}

sim(c, c′)

 =

= 2 · sim(r′3, r3) + sim(r′3, r5) + 2 · sim(r′3, r4) = 2 ·
2

4
+

1

5
+ 2 ·

2

4
≈ 2.2.

5.1.4 Computing the candidate abnormal examples

In this section we show how the above introduced scores can be employed in
order to determine the set ECands of candidate abnormal examples.

Figure 6 shows the hCBOut-candidate-selector algorithm, that given a
background knowledge B, a set of examples E , and the two positive integers m
and kmax, determines the set ECands. In particular, the parameter m is used
to control the size of the set ECands.

The algorithm determines four sets of candidate abnormal examples, each
of size m. The sets are: candidate positive irregulars (lines 2-5), candidate
negative irregulars (lines 6-9), candidate positive anomalous (lines 10-19), and
candidate negative anomalous (lines 20-29).

In order to determine these candidate examples, a score is assigned to each
example by exploiting the score functions introduced in the preceding sections,
that is the irregularity score function for selecting the candidate positive and
negative irregular examples (see Section 5.1.2), and the anomaly score for
selecting the candidate positive and negative anomalous examples (see Section
5.1.3).

Specifically, %-consistent hypotheses with % varying from 1 to kmax are
considered to single out candidate anomalous examples. This is accomplished
in order to detect potential anomalous sets of size up to kmax. We note that
a %-consistent hypothesis can be computed by allowing the inductor to induce
clauses covering at most % negative examples.

The set ECand returned by the algorithm is the union of the four sets above
listed.

Here we argument why the %-consistent hypothesis is compared with the
preceding one (the (%−1)-consistent one) and not with the consistent hypoth-
esis. The motivation is that while the former strategy allows to detect genuine
candidate anomalous examples, the latter strategy may lead to the individua-
tion of false candidates. Clearly, the larger the value of %, the more general the
%-consistent hypothesis H̃En% and, consequently, the smaller the value of the

score scoreH̃En% ,H̃En0 ,En(e) obtained by comparing the hypothesis H̃En% with the

consistent one H̃En0 = HEnB . Conversely, the score scoreH̃En% ,H̃En%−1,En
(e) obtained

by comparing the %-consistent hypothesis H̃En% with the (%− 1)-consistent one
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Function hCBOut-candidate-selector(B, E , m, kmax)

1: set ECands to ∅
// Compute candidate positive irregulars

2: induce the hypothesis Hp
0 = HEB

3: foreach e ∈ E+ do

4: compute the irregularity score is+e = scoreHp
0 ,H

p
0 ,E+

(e)

5: insert into ECands the examples e associated with the m smallest scores is+e
// Compute candidate negative irregulars

6: induce the hypothesis Hn
0 = HEB

7: foreach e ∈ E− do

8: compute the irregularity score is−e = scoreHn
0 ,Hn

0 ,E+ (e)

9: insert into ECands the examples e associated with the m smallest scores is−e
// Compute candidate positive anomalous

10: foreach e ∈ E+ do

11: set as+e to +∞

12: set H̃n
0 to Hn

0
13: for % = 1 to kmax do

14: induce the %-consistent hypothesis H̃n
% on E w.r.t. B

15: foreach e ∈ E+ do
16: if edgesH̃n

%
(e) 6= ∅ then

17: compute the anomaly score as+cur = scoreH̃n
% ,H̃n

%−1,E
+ (e)

18: set as+e to min{as+e , as+cur}

19: insert into ECands the examples e associated with the m smallest scores as+e among
those smaller than +∞
// Compute candidate negative anomalous

20: foreach e ∈ E− do

21: set as−e to +∞

22: set H̃p
0 to Hp

0
23: for % = 1 to kmax do

24: induce the %-consistent hypothesis H̃p
% on E w.r.t. B

25: foreach e ∈ E− do
26: if edgesH̃p

%
(e) 6= ∅ then

27: compute the anomaly score as−cur = scoreH̃p
%,H̃

p
%−1,E

+ (e)

28: set as−e to min{as−e , as−cur}

29: insert into ECands the examples e associated with the m smallest scores as−e among
those smaller than +∞

30: return ECands

Fig. 6: hCBOut-candidate-selector function
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Fig. 7: Example of anomalous scores.

H̃En%−1 is low if e belongs to a set of size % representing a minimal anomalous
set, namely such that all its subsets of size %−1 are not very likely to represent
anomalous sets.

Example 4 As an example, consider the set of examples reported in Figure
7. Figure 7b shows the 2-consistent hypothesis. By comparing this hypothesis
with that 1-consistent one reported in Figure 7a, we can see that in the former
hypothesis there is a rule, r′2, that covers a large set of positive examples and
generalizes rules r2, r3, r4, and r5. Furthermore, rule r′2 covers also the two
negative examples e and f . Figure 7c shows the 3-consistent hypothesis. Now
rule r′′2 covers a larger set of positive examples than r′2 and, moreover, also the
negative example j.

By comparing the various hypotheses, it is clear that it is advantageous to
consider a 2-consistent hypothesis since in this case four rules are generalized
in a single one, while the 3-consistent hypothesis offers a limited advantage if
compared to the 2-consistent one, but appears to offer about the same advan-
tages of the 2-consistent if compared to the consistent one.

As for the anomaly scores, the value of the scores score2an(e) and score2an(f)
is approximately to 1.93, while the scores score3an(j), score3an(e) and score3an(f)
evaluate to 18.1. Conversely, if the 3-consistent hypothesis is compared with
the consistent one it holds that scoreH̃En3 ,H̃En0 ,En(e), scoreH̃En3 ,H̃En0 ,En(f) and

scoreH̃En3 ,H̃En0 ,En(j) evaluate about to 1.24. Thus, according to the latter score,

the example j would be a good candidate anomalous example.

As for the cost of the hCBOut-candidate-selector function, first the irregular-
ity scores for each positive example (lines 3-4) and for each negative exam-
ple (lines 7-8) have to be computed. These steps cost O

(
|Hp

0|2 · |E+|3
)

and

O
(
|Hn

0 |2 · |E−|3
)
, respectively (see Section 5.1.1 for the cost of computing the

scores). Next, the anomaly scores for the positive (negative, resp.) examples
have to be evaluated. This step needs to induce O(kmax) inconsistent hypoth-
esis, line 14 (line 24, resp.), and then to compute the anomaly score. Let
Cind(B, E) be the cost of inducing an hypothesis and let h be the maximum
number of clauses in an induced hypothesis, then the cost of the hCBOut-
candidate-selector function is O

(
kmax ·

(
Cind(B, E) + h2|E|3

))
.



Exploiting Domain Knowledge to Detect Outliers 27

Function hCBOut(B, E , α, m, kmax)

// First phase: candidate selection
1: ECand ← hCBOut-candidate-selector(B, E, m, kmax)

// Second phase: search space visit
2: 〈Out, Irr, Anom〉 ← CBOut(B, E, ECand, α, kmax)
3: return 〈Out, Irr, Anom〉

Fig. 8: The hCBOut algorithm.

5.1.5 The hCBOut Algorithm

Figure 8 reports the Heuristic CBOut algorithm. It consists of two phases. The
first phase is that of candidate selection, which is accomplished by executing
the function hCBOut-candidate-selector described in Section 5.1.4. This func-
tion returns the set ECand of abnormal candidates. During the second phase,
the abnormal sets are computed through the CBOut algorithm, described in
Section 4, by considering as search space only the examples in the set ECand.
The pseudo-code of the CBOut algorithm (see Figure 2) has to be slightly
modified in order to limit the search space to the set ECand. In particular, the
set E employed in line 6 of Figure 2 has to be replaced by the set ECand, so
that the set Cand1 is set to {{e} | e ∈ ECand}.

Next, the cost of the hCBOut algorithm is analyzed. The algorithm requires
the evaluation of the hCBOut-candidate-selector function and the execution
of the algorithm CBOut, for a total cost of

O
(
kmax ·

(
Cind(B, E) + h2|E|3

)
+ |ECands|kmax · (Cind(B, E) + h|E|)

)
,

which can be approximated to the second term due the presence of the term
|ECands|kmax , that is to

O
(
|Ecands|kmax · (Cind(B, E) + h|E|)

)
.

Before concluding, we briefly discuss on the rationale underlying the introduc-
tion of the irregularity and anomaly scores for selecting candidate examples. As
a matter of fact, one could argue that the compliance relationship could be di-
rectly exploited in order to detect promising abnormal examples, by measuring
the gain involving two suitably related hypotheses. However, we point out that
the compliance intends to measure the difference of generalization between the
hypothesis induced in absence of a certain set of examples and the hypothesis
induced on the whole example set. Thus, in order to be meaningfully applied
it is needed to precisely induce the hypothesis under the assumption that the
set of examples of interest is not seen. But, this is exactly what we want to
avoid: that is to say, to enumerate all the subsets of the set of examples and
to measure the associated gain value.
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Function aCBOut-candidate-selector(B, E , m, kmax)

// Compute candidate negative abnormal examples
1: set On

Cands to ∅
2: induce the hypothesis H̃p

0 = HEB
3: for % = 1 to kmax do

4: induce the %-consistent hypothesis H̃p
% on E w.r.t. B

5: foreach c ∈ H̃p
% do

6: if coversE− (c) 6= ∅ then
7: set scr to 1

8: foreach c′ ∈ H̃p
%−1 do

9: scr =
max(scr,|coversE+ (c)\coversE+ (c′)|+1)

1

|H̃p
%|−1

∑
c′′∈H̃p

%\{c}
|coversE+ (c′′)|

10: update the set On
Cands by adding the set coversE− (c) with associated

score scr

11: leave in On
Cands only the sets having associated the m largest scores

// Compute candidate positive abnormal examples
12: set Op

Cands to ∅
13: induce the hypothesis H̃n

0 = HEB
14: for % = 1 to kmax do

15: induce the %-consistent hypothesis H̃n
% on E w.r.t. B

16: foreach c ∈ H̃n
% do

17: if coversE+ (c) 6= ∅ then
18: set scr to 1

19: foreach c′ ∈ H̃n
%−1 do

20: scr =
max(scr,|coversE− (c)\coversE− (c′)|+1)

1

|H̃n
% |−1

∑
c′′∈H̃n

% \{c}
|coversE− (c′′)|

21: update the set Op
Cands by adding the set coversE+ (c) with associated

score scr

22: leave in Op
Cands only the sets having associated the m largest scores

23: return Op
Cands ∪ O

n
Cands

Fig. 9: aCBOut-candidate-selector function.

5.2 The Approximate CBOut algorithm

Rather than limiting the search space to the subsets of size up to kmax of a
selected subset ECands of the whole set of examples, as done by the hCBOut
algorithm, the Approximate CBOut algorithm (aCBOut, for short) reduces
further the size of the search space by directly selecting a small set OCands

of candidate abnormal set of examples. Two are the desiderata that aCBOut
must meet in order to deal with large set of examples, that are the set OCands

should be of limited size, but anyway contain promising candidate abnormal
sets, and it should be determined efficiently. Overall, the cost should be linearly
related to the number |E| of examples and the exponential dependency from
the parameter kmax should be broken.
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Figure 9 reports the aCBOut-candidate-selector function. aCBOut selects
candidate abnormal sets by exploiting %-consistent hypotheses in order to fast
detect candidate abnormal sets. Given a %-consistent hypothesis HE% (with
% > 0), the candidate abnormal sets are selected among the sets of negative
examples coversE−(c) covered by the clauses c of HE% . Moreover, in order to
rank these sets with respect to their significance as abnormal sets, a score
is assigned to each of them. Specifically, the score associated with the set
coversE−(c) is determined as follows:

maxc′∈HE%−1
|coversE+(c) \ coversE+(c′)|+ 1

1
|HE% |−1

∑
c′′∈HE%\{c}

|coversE+(c′′)|
.

Intuitively, this score measures to what extent the removal of the examples
in coversE−(c) contributes to ameliorate the generalization of the examples in
coversE+(c).

For now, take into account only the numerator of the score. If the examples
in coversE+(c) are already covered all together by a clause c′ of HE%−1, then
removing the examples in coversE−(c) does not help further in generalizing the
concept underlying the examples in coversE+(c), and in this case the numer-
ator evaluates to one (i.e., the minimum value). On the contrary, if no pair of
examples from coversE+(c) is also included in a clause c′ of HE%−1, then remov-
ing the examples in coversE−(c) allows to induce a rule covering |coversE+(c)|
previously (that is, according to the (% − 1)-consistent hypothesis) uncorre-
lated examples, and in this case the numerator evaluates to |coversE+(c)| (the
maximum possible value for the considered examples).

As for the denominator, it represents the mean number of examples covered
by the clauses belonging to the current hypothesis HE% after having excluded
the clause c. Its role is to mitigate the bias towards (possibly larger) candidate
sets associated with large values of the parameter %.

The candidate abnormal sets are the sets scoring the m largest abnormality
scores among those associated with clauses belonging to %-consistent hypothe-
ses with % ≤ kmax, where m and kmax are two user-provided parameters. Note
that the same set could be associated with different clauses. In such a case,
the best score associated with that set has to be considered.

Both positive and negative candidate abnormal sets are determined by con-
sidering alternatively the direct (for negative candidates) and the dual concept
(for positive candidates). The candidate sets returned in the set OCands by
the aCBOut-candidate-selector function are then checked for abnormality by
computing their compliance both with E ∪ B and E ∪ B and, finally, the min-
imal irregular, anomalous, and outlier sets in OCands form the output of the
aCBOut algorithm.

Notice that, due to the way candidate abnormal sets are selected, aCBOut
is primarily interested in anomalous and outlier sets. This should not be seen
as a limitation, but rather as a peculiarity of the method, since anomalous
and outliers sets are the subtler form of abnormality here considered and,
moreover, since the algorithm can discover also irregulars.
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Consider now the temporal cost of aCBOut. Computing the abnormality
score costs O(h|E|), where h is the maximum number of clauses in an in-
duced hypothesis and O(|E|) accounts for the cost of computing the difference
between two sets. Thus, the cost of the aCBOut-candidate-selector function
is O(kmax · (Cind(B, E) + h2|E|)) and, as a whole, the cost of the aCBOut
algorithm is

O(kmax · (Cind(B, E) + h2|E|) + |OCands| · (Cind(B, E) + h|E|)),

with |OCands| not greater than 2m. It can be concluded that the temporal
cost of aCBOut makes it suitable for detecting abnormal sets in presence of
large set of examples.

The only term showing a quadratic dependence is h, the maximum number
of clauses of an hypothesis. However, it must be noted that in practice h is
small. Moreover, there is a trade-off between the number of clauses h and the
average number of examples covered per clause, so that if h is not very small,
then it is the case that there is little overlap between clauses and computing
the symmetric difference is easier. Thus, in practice the cost associated with
score computation is far lower than the upper bound h2|E|.

Notice further that aCBOut can take fully advantage of parallelization,
both during the first phase of candidate computation, when scores or score
terms could be computed separately, and during the second phase of gain
computation, when the compliance relationships could be checked apart. A
similar strategy can be used also to parallelize CBOut and hCBOut, but for
these algorithms some dependencies among candidate sets have to be taken
into account that lower their degree of parallelization with respect to that of
aCBOut.

Before concluding, we remark that both aCBOut and hCBOut are consis-
tent and, since they explore only a portion of the search space, are necessarily
incomplete. Clearly, the reduced cost of aCBOut has a counterpart. Since it
does not consider the downward closure of the candidate abnormal sets (for
otherwise the cost would turn to be exponential in the parameter kmax) the
returned sets could not be minimal with respect the containment between ab-
normal sets. However, the strategy employed to select candidates is supposed
to provide reasonably fast good abnormals even in presence of approximate
computations.

6 Related Work

Many ILP systems include mechanisms for handling imperfect data in order
to make ILP applicable to real-life problems. In particular, according to the
taxonomy mentioned in (Lavrac̆ et al, 1996), the following forms of imperfect
data can be encountered: random errors, or noise, that is either noise in the ex-
amples (caused by erroneous argument values and/or erroneous classification
of facts as true or false) or noise in the background knowledge; incompleteness,
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that is to say too sparse examples for which it is difficult to reliably detect regu-
larities; inappropriateness, that is to say imperfect background knowledge, due
either to predicates that are not relevant for the learning task or to predicates
insufficient for learning; missing values, that are missing argument values in
examples. ILP learning systems usually have a single mechanism, called noise-
handling mechanism, for dealing with the first three kinds of imperfect data
(noisy, incomplete and inexact data), which prevents the induced hypothe-
sis from overfitting the data set, while missing values are usually handled
by a separate mechanism. The noise-handling mechanisms are of two types:
using appropriate search heuristics and stopping criteria during the hypoth-
esis construction; generating the target predicate definition as the data were
completely correct by employing the standard consistency and completeness
stopping criteria and, then, post-processing the induced hypothesis.

While the presence of noise in the examples has some relationship with the
approach here pursued, the other kinds of imperfect data are orthogonal to
the present task, in that they are problems of the learning task in its entirety.
We recall that the problem definition given in Section 2.2 requires that the in-
duced hypothesis is complete and consistent. We point out that noise possibly
present in the examples does not affect the task of detecting abnormals, since
the noise is retained both in presence and in absence of the set to be tested for
abnormality. Moreover, the notions of starting and ending theories, other than
playing the important role of explanation, may greatly mitigate the influence
on the portions of hypotheses compared when testing the compliance relation-
ship of most of the noise possibly present. Furthermore, the task considered
here is a knowledge discovery one. The knowledge mined by the method is far
richer than noise. In particular, as already discussed in Section 3, anomalous
sets are very different from noise, since they well fit the concept to be learned,
but they also have some commonalities with the dual concept, so that it is
very difficult to discriminate them from a non-instance. As far as irregular
and outlier sets is concerned, it can be said that they have some analogies
with noise in examples, since the description of the concept would be signifi-
cantly more concise if each example in the set were not observed. Nonetheless,
the distinction between irregular sets and outlier sets allows us to provide a
finer characterization of the abnormality at hand. In particular, as previously
noted, while we can imagine that irregular sets are “far away” the majority of
the positive examples, but anyway “far” from the negative ones, differently we
can imagine that outlier sets lie very close or within the “shape” of the dual
concept.

In (Angiulli et al, 2007, 2008) a notion of outlier in the context of some
knowledge-based systems is defined. In particular, the formal frameworks con-
sidered are those of Default Logics and Extended Disjunctive Logic Program-
ming under answer set semantics (Angiulli et al, 2008) and Logic Programming
under stable model semantics (Angiulli et al, 2007). Loosely speaking, given a
logic program P and a set of facts F , a subset O of F is said to be an outlier, if
there exists a nonempty set W of F , called witness, such that the two following
conditions hold: (i) P ∪ (F \W ) |= ¬W , and (ii) P ∪ (F \ (W ∪ O)) 6|= ¬W ,
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where ¬W denotes the conjunction of the negation of the atoms occurring in
W , that is ¬W = ¬w1∧ . . .∧¬wn with W = {w1, . . . , wn}. Intuitively, the first
condition states that the facts in W encode an unexpected property, since if
these observations were dropped from the set of facts at hand then the exact
opposite would have been concluded, while the second condition states that
the unexpected property W is indeed a property related to the facts in O,
which hence encode knowledge exhibiting some anomalous behavior.

There are major differences between the approach presented here and those
above recalled. First, our approach is based on induction, while the above
mentioned approaches are based on deduction. Indeed, the disagreement of
the abnormal observations with the theory at hand is perceived here by means
of a measure of the difference of the generalization of the hypotheses induced
in presence/absence of the observations (the compliance relationship), while
in (Angiulli et al, 2007, 2008) it is perceived by means of the satisfaction of
certain conditions involving the entailment operator. Moreover, importantly,
the definitions proposed in (Angiulli et al, 2007, 2008) strongly rely on the
non-monotonicity of the employed formalisms, which use either default rules
or negation by default (other than the classical negation). As a matter of fact,
if the logic program under consideration is positive, that is under the formal
framework considered here, according to the definition provided in (Angiulli
et al, 2007) there are no outliers in a logic program (cf. Theorem 3.2 of (Angiulli
et al, 2007)). In fact, if P ∪ (F \ (W ∪O)) 6|= ¬W , since the program is positive
it is the case that P ∪ (F \ (W ∪ O)) |= W and, hence, by monotonicity, also
that P ∪ (F \W ) |= W . This makes the two approaches for defining outliers
incomparable from a practical point of view.

Somehow related to the research conducted here are the anomaly de-
tection techniques exploiting approximate dependency-based methods. These
techniques are based on the inference of functional dependencies from data.
Mannila and Räihä (1987) deal with the problem of inferring functional de-
pendencies from data. A functional dependency (FD) is a rule of the form
A → b where A is a set of attributes and b is an attribute stating that if the
dataset objects assume the same value on the set of attribute A they must as-
sume the same value also on the attribute b. Initially, these kind of rules have
been introduced and extensively used as user-defined constraints for defining
a database schema. Afterwards, FDs have been seen as pieces of knowledge
that could be mined from data: inferring from a dataset an unexpected FD
could highlight an interesting property. In this latter sense, some efforts have
been made to interpret FD inference from a data mining point of view (Nov-
elli and Cicchetti, 2001). It is quite clear that, in real dataset, often an FD
does not strictly hold, since the property the FD represents could be valid
from most the dataset objects but not for all the dataset objects. As a conse-
quence, especially for data mining purposes, it is needed to infer approximate
functional dependencies (A-FD), namely FD holding from most the dataset
objects, both in relational database (Kivinen and Mannila, 1995) and in XML
database (Fassetti and Fazzinga, 2007). Quite naturally, the objects not sat-
isfying the inferred A-FDs could be seen as a particular kind of “anomaly”,
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as highlighted by (Bruno et al, 2007) in the XML context. Even if the idea
pursued in these approaches concerns the inference of a kind of rule and the
detection of the anomalies is made on the basis of the inferred rule, there are
substantial differences with our approach. First of all, the A-FD based tech-
niques are able to identify only objects that are abnormal since they do not fit
the positive class (namely, irregular objects), then they are not able to mine
anomalous or outlier objects. Moreover, these techniques cannot take advan-
tages from the presence of a background knowledge which could carry relevant
information for the analysis. Finally, they do not supply the abnormal objects
with an explanation of the characterizing abnormality.

Outlier detection in data mining considers the following task: “Given a
set of data points or objects, find the objects that are considerably dissim-
ilar, exceptional or inconsistent with respect to the remaining data”. Early
methods for outlier identification have been developed in the field of statistics.
Different outlier detection approaches have been proposed in the literature, as
distance-based (Knorr and Ng, 1998; Angiulli and Pizzuti, 2002; Ramaswamy
et al, 2000; Angiulli et al, 2006; Angiulli and Fassetti, 2009a), density-based
(Breunig et al, 2000; Papadimitriou et al, 2003), frequent pattern-based (He
et al, 2005), projection-based (Aggarwal and Yu, 2001), angle-based (Kriegel
et al, 2008), isolation-based (Liu et al, 2012), and others (Chandola et al, 2009).
Among these approaches, distance-based outlier detection has been introduced
by Knorr and Ng (1998) to overcome the limitations of statistical methods: an
object O is a distance-based outlier in a data set with respect to parameters
k and R if at least k objects in the data set lie within distance R from O.
This definition generalizes the definition of outlier in statistics. Moreover, it is
suitable in situations when the data set does not fit any standard distribution.
The assumption of distance-based methods is that it is possible to compute
for each pair of objects their distance. First-order distance measures were pro-
posed and used in various distance-based multi-relational algorithms (Kirsten
et al, 2001), such as Ribl2, an instance-based learner applying the k-nearest
neighbor classifier, Rdbc, a hierarchical agglomerative clustering method, and
Forc, a k-means clustering algorithm.

Clearly, there are major differences between the approach here proposed
and these data analysis tools. Almost all of them are not able to deal with
labeled examples. Moreover, outliers returned by these methods, and also by
almost all of the unsupervised outlier detection approaches, are of different
nature with respect to those returned by the approach here introduced. Intu-
itively, these outliers are likely to correspond to irregular instances as defined
here, since they are individuals whose attribute-value pattern is shared less.

7 Experimental results

In this section we present experiments conducted by using the outlier detection
approach here introduced.
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We implemented the CBOut algorithm and its variants in Yap Prolog on
top of the P-Progol system1 which is based on the PROGOL algorithm (Mug-
gleton, 1995). Progol combines inverse entailment with general-to-specific search
through a refinement graph. Inverse entailment is used with mode declarations
to derive the most-specific clause within the mode language which entails a
given example. This clause is used to guide a refinement-graph search. Pro-
gol’s search is efficient and has a provable guarantee of returning a solution
having the maximum compression in the search-space. To do so it performs an
admissible A∗-like search, guided by compression, over clauses which subsume
the most specific clause.

Experiments are organized as follows. Section 7.1 discusses the kind of
knowledge mined by CBOut in different contexts. Section 7.2 shows how to
improve efficiency while maintaining good accuracy in domains with a few
hundreds of examples and possibly large background theories, by exploiting
the hCBOut algorithm. Finally, Section 7.3 illustrates the application of the
here introduced approach to large set of examples, by means of aCBOut.

7.1 Knowledge mined

This section discusses the kind of knowledge discovered by CBOut in different
contexts. Specifically, Section 7.1.1 considers a zoo data set containing in-
stances associated with animals and their properties, subsequent Section 7.1.2
takes into account a student loan relational domain, Section 7.1.3 explores a
mutagenesis data set concerning the prediciton of carcinogenesis and, finally,
Section 7.1.4 compares the kind of knowledge singled out by CBOut with
distance-based outliers.

7.1.1 Zoo data set

In this experiment we considered the Zoo data set from the UCI Machine
Learning Repository2. This database contains instances associated with ani-
mals. Each instance consists of the animal name, the class which it belongs to
(amphibian, bird, fish, invertebrate, insect, mammal, reptile), the number of
legs (a value in the set {0, 2, 4, 5, 6, 8}), and the following boolean attributes:
hair, feathers, eggs, milk, airbone, aquatic, predator, toothed, backbone, breathes,
venomous, fins, tail, domestic, catsize.

We built a background theory consisting of one unary predicate for each
boolean attribute, and of the binary predicate legs. We used as target predicate
the binary predicate class. The set of positive examples consists of one hundred
facts. The set of negative examples, consisting of six hundreds facts, has been
obtained by associating each animal with the classes it does not belong to.

1 www.comlab.ox.ac.uk/oucl/research/areas/machlearn/PProgol/pprogol.pl.
2 http://archive.ics.uci.edu/ml/datasets/Zoo.
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We executed the algorithm with α = 0.05 and kmax = 1. Besides the facts
in the induced hypothesis and the induced dual hypothesis, which are classified
as irregular sets, the algorithm reported the following abnormal sets:

– O1 = {class(amphibian, newt)} as positive outlier,
– O2 = {class(insect, ladybird)} as positive anomalous, and
– O3 = {class(mammal, platypus)} as positive anomalous.

Next we comment on some of the knowledge discovered by the method.

The positive outlier set O1 = {class(amphibian, newt)} is a fact in the di-

rect theory, while it has as dual explanation the dual starting theory
−→
HEB(O1):

not class(amphibian,X)← catsize(X) 〈44〉
not class(amphibian,X)← legs(2, X) 〈27〉
not class(amphibian, tuatara) 〈1〉
not class(amphibian, scorpion) 〈1〉,

and the dual ending theory
←−
HEB(O1):

not class(amphibian,X)← tail(X) 〈74〉,

with gain 0.11. From this explanation, it is clear that the newt is the only
amphibian in the example set having the tail. As a matter of fact, it is the
only amphibian of the Caudata order belonging to the set of examples, while
all the other amphibians in the example set belong to the Anura order, which
is characterized by the absence of tail.

The positive anomalous set O2 = {class(insect, ladybird)} has as dual

explanation the dual starting theory
−→
HEB(O2):

not class(insect,X)← aquatic(X) 〈35〉
not class(insect, scorpion) 〈1〉,

and the dual ending theory
←−
HEB(O2):

not class(insect,X)← predator(X) 〈54〉,

with gain 0.08. Indeed, among the insects present in the examples, that are
the flea, gnat, honeybee, housefly, moth, termite, and wasp, the ladybird is the
only predator.
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The positive anomalous set O3 = {class(mammal, platypus))} has as dual

explanation the dual starting theory
−→
HEB(O3):

not class(mammal,X)← legs(6, X) 〈10〉
not class(mammal,X)← feathers(X) 〈20〉
not class(mammal,X)← eggs(X), toothed(X) 〈19〉
not class(mammal,X)← eggs(X), legs(0, X) 〈19〉
not class(mammal, starfish) 〈1〉
not class(mammal, tortoise) 〈1〉
not class(mammal, crab) 〈1〉
not class(mammal, octopus) 〈1〉,

and the dual ending theory
←−
HEB(O3):

not class(mammal,X)← eggs(X) 〈57〉,

with gain 0.09. The platypus is a well-known strange mammal, since the female
lays eggs, although the newly hatched young are fed by the mother’s milk.

7.1.2 Student Loan

Here we consider the Student Loan relational domain from the UCI Machine
Learning Repository3.

The target unary predicate no payment due(Person) is true for those peo-
ple who are not required to repay a student loan. Auxiliary relations can be
used to fully discriminate positive from negative instances. We executed the
algorithm with α = 0.05 and kmax = 1, with 78 positive examples and 34
negative examples, consisting of the students whose identifier number starts
with 1.

Besides the facts in the induced hypothesis and the induced dual hypoth-
esis, the CBOut algorithm reported the following abnormal sets:

– O1 = {no payment due(student149)} as negative outlier,
– O2 = {no payment due(student116)} as negative outlier, and
– O3 = {no payment due(student102)} as positive anomalous.

Next we briefly comment on some knowledge discovered by the method. In the
following we will denote by payment due the predicate not no payment due
associated with the dual concept.

The negative outlier set O1 = {no payment due(student149)} has, as direct

explanation, the direct starting theory
−→
HEB(O1):

no payment due(X)← enrolled(X,Y, 10) 〈12〉,

3 http://archive.ics.uci.edu/ml.
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and the direct ending theory
←−
HEB(O1):

no payment due(X)← male(X), enrolled(X,Y, 10) 〈6〉
no payment due(student165) 〈1〉
no payment due(student112) 〈1〉
no payment due(student196) 〈1〉,

with gain 0.13, while it is a fact in the dual theory. The student149 is strange,
since it is the only enrolled in ten units which is required to repay a student
loan.

The positive anomalous set O3 = {no payment due(student102)} has, as

dual explanation, the dual starting theory
−→
HEB(O3):

payment due(X)← male(X), enrolled(X,Y, 3) 〈6〉,

and the dual ending theory
←−
HEB(O3):

payment due(X)← longest absence from school(X, 7), enrolled(X,Y, 3) 〈2〉
payment due(103) 〈1〉
payment due(110) 〈1〉
payment due(111) 〈1〉
payment due(180) 〈1〉,

with gain 0.06. The student102 is the only male enrolled in three units which
is not required to repay a student loan.

7.1.3 Mutagenesis data set

Mutagenesis is relevant to the understanding and the prediction of carcino-
genesis. The problem here considered consists in predicting the mutagenicity
of a set of aromatic and heteroaromatic nitro compounds by using only the
atomic bond structure of the compounds. The data is based on the results in
(Debnath et al, 1991) and comes from ILP experiments conducted with Progol
and described in (Srinivasan et al, 1996).4 Each compound is represented by
a sets of facts of the form:

– bond(compound, atom1, atom2, bondtype): stating that compound has a bond
of bondtype between the atoms atom1 and atom2; and

– atm(compound, atom, element, atomtype, charge): stating that in compound
atom has element of atomtype.

The background knowledge consists in 12,203 facts on atomic structure and
bonding plus some rules that define generic chemistry knowledge and concepts,
as ring structures.

4 Data are available at http://www.comlab.ox.ac.uk/activities/machinelearning/

mutagenesis.html.
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Of the 230 compounds, 138 have positive levels of log mutagenicity, these
are labeled active and constitute the positive examples. The remaining 92
compounds are labeled inactive and constitute the negative examples. More-
over, the original (Debnath et al, 1991) paper recognized two subsets of data:
188 compounds that could be fitted using linear regression (125 active and 63
inactive), and 42 compounds that could not (13 active and 29 inactive). The
model makes use of some independent variables, among which there are the
logp, that is the hydrophobicity of the compound, and the lumo, that is the
energy level of the lowest unoccupied molecular orbital.

We executed the algorithm CBOut on the set of examples correspond-
ing to the compounds that fit linear regression in order to isolate abnor-
malities in the supposedly regular data. The parameters used are α = 0.05
and kmax = 1. Besides the facts in the induced direct and dual hypothe-
ses returned as irregular sets, the algorithm reported the following abnormal
sets: O1 = {active(d65)} as negative outlier, O2 = {active(d178)} as pos-
itive anomalous, O3 = {active(d70)} and O4 = {active(d188)} as negative
anomalous.

Next we comment on the knowledge associated with some of the discovered
abnormal sets.

The negative outlier set O1 = {active(d65)} is a fact in the dual theory

while it has, as direct explanation, the direct starting theory
−→
HEB(O1):

active(X)← atm(X,Y, o, 40,−0.389), bond(X,Z, Y, 2), bond(X,W,Z, 1) 〈11〉
active(d105) 〈1〉

and the direct ending theory
←−
HEB(O1):

active(X)← atm(X,Y, c, 27, Z), lumo(X,W ),W ≤ −1.749 〈42〉

with gain 0.309. The knowledge discovered states that having the compound
d65 as a negative example prevents to induce the following knowledge gener-
alizing a large number of positive examples (37% of the positive examples): in
the representation employed, a carbon atom of type 27 with lumo less than
−1.749 is active.

The negative anomalous set O4 = {active(d188)} has, as direct explana-

tion, the direct starting theory
−→
HEB(O4):

active(X)← atm(X,Y, c, 22,−0.122), logp(X,Z), Z ≥ 2.74 〈14〉
active(X)← atm(X,Y, c, 22,−0.114), bond(X,Z, Y, 1) 〈7〉
active(X)← atm(X,Y, c, 10, Z), atm(X,W, c, 29, Z), ring size 5(X,V ) 〈15〉
active(X)← atm(X,Y, o, 40,−0.389), bond(X,Z, Y, 2), bond(X,W,Z, 1) 〈11〉
active(d79) 〈1〉
active(d18) 〈1〉
active(d87) 〈1〉
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and the direct ending theory
←−
HEB(O4):

active(X)← atm(X,Y, c, 29, Z), ring size 5(X,W ) 〈36〉
active(X)← atm(X,Y, n, 38, Z), Z ≤ 0.794 〈10〉

with gain 0.120. Also in this case, having the compound d188 as a negative
example prevents to induce the piece of knowledge associated with the ending
theory which sensibly increases generalization.

The positive anomalous set O2 = {active(d178)} has, as dual explanation,

the dual starting theory
−→
HEB(O2):

not active(X)← atm(X,Y, h, 3, 0.137), lumo(X,Z), Z ≥ −1.266 〈7〉
not active(X)← atm(X,Y, n, 34, Z), atm(X,Y, c, 21,W ),W ≥ −0.107 〈7〉
not active(X)← atm(X,Y, o, 50, Z), lumo(X,W ),W ≤ −1.474 〈6〉
not active(X)← atm(X,Y, c, 22, Z), Z ≤ −0.174 〈2〉
not active(d168) 〈1〉
not active(d88) 〈1〉

and the dual ending theory
←−
HEB(O2):

not active(X)← lumo(X,Y ), Y ≥ −1.24,methyl(X,Z) 〈12〉
not active(X)← logp(X,Y ), Y ≤ 1.87,methyl(X,Z) 〈10〉

with gain 0.128, similar to that of O4.

Moreover, we re-executed the algorithm CBOut on the whole set of exam-
ples with parameters α = 0.05 and kmax = 2 in order to isolate abnormal sets
composed of at most two elements. As an example, CBOut returned the the
negative outlier set O′ = {active(d192), active(d193)}. This set has as direct

explanation, the starting theory
−→
HEB(O′):

active(X)← atm(X,Y, o, 40,−0.384), logp(X,Z), Z ≥ 2.06 〈11〉

and the ending theory
←−
HEB(O′):

active(d122) 〈1〉

that means that the negative examples in O′ prevent to induce the clause in
the starting theory. We note that if just one of the two examples in O′ is
removed from the set of negative examples the clause in the starting theory
cannot be induced. In the dual hypothesis, the two examples in O′ are covered
by a clause covering just them, and, as a result, O′ does not comply with E∪B.
Interestingly, this pair of examples belongs to the set of examples that does
not fit the linear regression model.
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7.1.4 Comparison with Distance-Based Outliers

Here, the knowledge mined by CBOut is compared with distance distance-
based outliers. The distance-based outliers in the original Zoo data set are
detected by using as outlier score the sum of the distances to the k-nearest
neighbors (Angiulli and Pizzuti, 2005) and the Hamming function as distance
measure. We set both k (the number of nearest neighbors to consider) and
n (the number of outliers to return) to 5 (that corresponds to the 5% of
the positive examples). The following table reports the top-n distance-based
outliers:

Outlier (Score) Nearest Neighbors

1. scorpion (25) worm, slug, pitviper, clam, crab
2. seasnake (19) pitviper, stingray, chub, herring, bass
3. tortoise (18) tuatara, ostrich, rhea, slowworm,wren
4. toad (17) frog, newt, tuatara, worm, crab
5. pitviper (15) slowworm, tuatara, seasnake, newt, kiwi

As for the comparison with our method, the singleton sets of positive examples
associated with the distance-based outliers 2, 3, 4, and 5, are returned as
irregular sets by our method, while, as for the outlier 1, some singleton sets
of negative examples involving it are returned by irregular sets. The example
class(invertebrate, scorpion) is not recognized as abnormal, since it shares
with the octopus the property of having eight legs.

It is clear, that the abnormal instances returned by the distance-based
method are of different nature with respect to those returned by the approach
here introduced. In particular, distance-based outliers are likely to correspond
to irregular instances, since, intuitively, they are objects whose attribute-value
pattern is shared less.

7.2 Improving efficiency

In this section it is shown how to improve efficiency of CBOut by taking
advantage of the hCBOut algorithm in domains where a few hundreds of
examples are available possibly together with a complex background theory.

Figure 10 shows the execution time5 (in seconds) of the second phase of the
hCBOut algorithm on the Zoo (Figure 10a), Student loan (Figure 10b), Mu-
tagenesis regression friendly (consisting of the compounds that can be fitted
by linear regression (Figure 10c), and Mutagenesis data sets (Figure 10d).

Various values for the parameter m, that are m = 5 (the solid lower curve,
with triangles), m = 10 (the solid middle curve, with squares), and m = 20
(the solid upper curve, with circles), and for the parameter kmax varying up
to either 3 or 5, have been considered.

5 We employed Intel Xeon E5620 2.40GHz based computer with 4GB of main memory
and the Linux operating system.
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Fig. 10: Scalability of the hCBOut algorithm.

The following table summarizes the size of the sets of examples and of the
background theories associated with the four data sets.

Data set |E+| |E−| B
facts rules

Zoo 100 600 1,713 0
Student loan 78 34 521 16
Mutagenesis reg. friendly 125 63 15,040 41
Mutagenesis 138 92 15,040 41

¿From Figure 10, it is clear that the execution time increases with the pa-
rameter m. As far as the curves for m = 5 and m = 10 are concerned, in
almost all the experiments the execution time appears to be little influenced
by the parameter kmax. As for the curve with m = 20, the dependence of the
execution time from the parameter kmax appears to be more evident, since in
this case the number of candidate sets to explore sensibly increases.
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Data set m
Candidates

Recall
Abnormal Normal

Zoo
5 100% 0% 35.1%
10 100% 0% 62.2%
20 85.7% 14.3% 97.3%

Student loan
5 100% 0% 32.6%
10 100% 0% 51.2%
20 90.0% 10.0% 86.1%

Mutagenesis reg. friendly
5 93.3% 6.7% 42.4%
10 66.7% 33.3% 48.5%
20 58.5% 41.5% 72.7%

Mutagenesis
5 93.8% 6.2% 30.0%
10 96.0% 4.0% 48.0%
20 81.8% 18.2% 72.0%

Table 2: Recall of the hCBOut algorithm.

The dotted curves represent the execution time of the first phase of the
hCBOut algorithm, that is the candidate selection phase. In general, the cost
of the first phase is either comparable or noticeably smaller than that of the
second phase. On the Zoo data set the first phase is more costly than the
second one, since the cost of inducing an hypothesis on this data set is small
due to the simplicity of the associated background theory. On the other data
sets, for m = 20 the cost of the first phase is negligible with respect to the
cost of the second one.

In any case, it must be noticed that the candidate selection phase guaran-
tees to the hCBOut algorithm vast time savings with respect to the CBOut
one. Indeed, consider the dashed curve, corresponding to the execution time of
CBOut (only the values kmax ∈ {1, 2} have been considered, since for greater
values this algorithm requires too much time). Notice that for kmax = 2 the
algorithm CBOut requires about half a day on Zoo, six hours on Student loan,
three days on Mutagenesis reg. friendly, and ten days on Mutagenesis, while
hCBOut terminates after about fifteen minutes on the first two data sets, two
hours and half on the third one, and five hours on the last data set.

Table 2 reports the Recall and the fractions of normal and abnormal can-
didates returned by the hCBOut algorithm measured for kmax = 1. Let A
denote the set of examples belonging to at least an abnormal set. The fraction
of candidate examples in ECand which are actually part of an abnormal set is

|ECand ∩ A|
|ECand|

,

while the fraction of those which are not part of an abnormal set is |ECand\A|
|ECand| .

The Recall is the fraction of examples that are actually part of an abnormal
set belonging to the set |ECand|, that is

Recall =
|ECand ∩ A|
|A|

.
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From Table 2 it is clear that the recall (last column) increases with the pa-
rameter m. We notice that the size of the set ECands is directly proportional
to the value of the parameter m. Thus, the larger the parameter m, the larger
the size of ECands, and the greater the chance for the set ECand to accommo-
date abnormal examples. The fraction of examples in ECands that are actually
abnormal ones (the third column: abnormal candidates) shows that the qual-
ity of the candidates selected by hCBOut is very good. For small values of
m (m ∈ {5, 10}) almost all the candidates are abnormal. For m = 20, there
are candidate examples which are not abnormal, but the recall greatly in-
creases (up to the 97.3% for Zoo, the 86.1% for Student loan, and the 72.0%
for Mutagenesis).

Compare the two versions of the Mutagenesis data set; although the recall
is similar, it appears that a greater number of normal examples are selected
as candidates on the regression friendly data set. Since the Mutagenesis reg.
friendly data set has been obtained by the whole Mutagenesis one by remov-
ing “outliers”, it appears that the hCBOut is effective in isolating examples
exhibiting a clear abnormality.

7.3 Experiments on large sets of examples

In this section, experiments on data sets containing a large set of examples
are described. The huge dimension of the domains here considered can be effi-
ciently faced only with the aCBOut algorithm. Hence, experiments presented
in the following make use of this variant of CBOut. Experiments are organized
as follows. Section 7.3.1 describes the domains employed. Section 7.3.2 studies
scalability of the approach. Section 7.3.3 discusses on the accuracy and the
knowledge mined. Finally, Section 7.3.4 considers the task of comparing accu-
racy performance with and without abnormal instances detected on a family
of synthetically generated noisy data sets.

7.3.1 Description of the domains

The domains explored in the experiments presented in this section are Illegal
and Krk, both concerning the problem of learning chess endgames.

The Illegal domain (Muggleton et al, 1989) has become a widely accepted
test-bed for ILP systems. It regards the King-Rook-King (KRK) chess endgame,
corresponding to the situation in which only the following three pieces are left
on the chess board: White King (WK), White Rook (WK), and Black King
(BK). In particular, Illegal models the problem of learning rules for recogniz-
ing illegal positions when it is white’s turn to move (WTM). Illegal consists
of 3,241 positive examples and 6,760 negative examples. Examples are repre-
sented by the predicate illegal having six arguments standing for the file (col-
umn) and rank (row) coordinates for the WK, WR and BK. The background
knowledge provided is the ordering of rows or columns on a chess board. The
binary predicate lt tabulates pairs row or column values where one is less than
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Fig. 11: Scalability of the aCBOut algorithm.

the other. The binary predicate adj tabulates row or column values that are
adjacent.

The Krk domain (Bain and Srinivasan, 1995) deals with the problem of
predicting the optimal depth of win (that is, the number of moves to check-
mate) in the KRK endgame. It consists of the exhaustive database for the
KRK domain, where each example has associated with it optimal depth of
win information. Here this is represented by the predicate krk. The seven ar-
guments for this predicate stand for depth of win, and the file (column) and
rank (row) coordinates for the WK, WR and BK. The total number of ex-
amples is 20,056. These examples can be used to learn, e.g., the sub-concept
‘black-to-move KRK position won optimally for white (with)in N moves”. The
background knowledge consists of the ternary predicate diff, representing the
“symmetric difference” between files and ranks, and of the binary predicate lt
(“strictly less than”) for all unordered pairs of the file values A, . . . ,H, and
all unordered pairs of the rank values 1, . . . , 8.

If not otherwise stated, in the following kmax = 5 and m = 10 are employed
as parameters of aCBOut.

7.3.2 Scalability

In this experiment, we considered the Illegal and Krk8 data sets.
The Krk8 data set has as been obtained from Krk by using as set of positive

examples the KRK positions for which the White wins in at most height moves,
and as set of negative examples all the remaining KRK positions (that is, either
the White has a win between nine and sixteen moves or there is a draw). This
data set consists of 3,809 positive examples and 24,247 negative ones.

In order to study the scalability, from each data set we generated a family
of increasing size data sets preserving the class distribution. Figure 11 shows
the scalability of the aCBOut algorithm. In particular, Figures 11a and 11b
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show the execution time as a function of the number of examples taken into
account. The solid curve represents the total execution time, the dashed curve
the execution time of the candidate selection phase, while the dotted curve is
the time spent by the method to compute the scores used for ranking candidate
outlier sets.

Since the difference between the dashed and the dotted curve represents
the time needed to compute the %-consistent hypotheses needed to single out
candidates, it can be seen that the computational effort is mostly associated
with the task of computing hypotheses, which is heavy on these domains.
Particularly, the KRK data set is much more difficult, since the distribution
of its examples is very unbalanced and the induction algorithm is particularly
slow during the induction of the hypothesis associated with the dual concept.
¿From the curves it can be observed that the algorithm processes in reasonable
amount of time some thousands of examples. Its execution time is negatively
influenced by unbalanced set of examples, due to the necessity of computing
both direct and dual hypotheses. For data sets composed of tens of thousands
examples, exploiting parallelization is definitively needed.

7.3.3 Knowledge mined

In this section we discuss on the kind of knowledge mined by the aCBOut
algorithm.

Specifically, here we considered the Krk sl data set (for KRK short vs long
endgames), which has as set of positive examples the KRK positions for which
the white wins in at most five moves (capturing the concept “the endgame
terminates with a win in a few number of moves”) and as set of negative
examples the KRK positions for which the white wins in more than fifteen
moves (capturing the concept “the endgame terminates with a win after a
large number of moves”). The data set is composed of 1,101 positive examples
and 2,556 negative ones, for a total of 3,675 examples.

Figure 12 concerns the quality of the candidates selected by aCBOut. On
the abscissa it is reported a gain value α, while on the ordinate the percentage
of candidate sets that do not α-comply with the direct or dual hypothesis
(that is, that are classified as abnormal sets for that value of α). More than
the half of the candidate examples form an abnormal set at the level α = 0.05
(corresponding to a coverage increase of the 5% of the example set size). For
α = 0.01 (corresponding to a coverage increase of the 1%) all the candidate
sets are to be considered abnormal. There are no candidates with gain below
this threshold. From the analysis, it appears that the set of candidates selected
by aCBOut is of remarkable quality and, thus, the method can be effectively
exploited to mine abnormal sets in large domains.

Next we discuss some notable abnormal sets returned by aCBOut.

The positive example set O1 = {krk sl(c, 1, d, 4, a, 3), krk sl(c, 1, h, 4, a, 3),
krk sl(c, 1, e, 4, a, 3), krk sl(c, 1, g, 4, a, 3), krk sl(c, 1, f, 4, a, 3)} is an outlier.
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Fig. 12: Accuracy of aCBOut on the Krk sl data set.

The associated dual starting theory is

not krk sl(A,B,C,D,E, F )← edge(B), diff(B,F,G), diff(A,E,G) 〈325〉,

a rule covering 325 negative examples. The corresponding dual ending theory
is quite involved, consisting of 155 facts and three rules with relatively low
coverage. The gain in this case is sensibly large, amounting to 0.127. Moreover,
the examples in O1 are facts in the direct starting theory and, hence, they form
an outlier set.

This piece of knowledge states that “when the WK is on a edge rank and
the distance between the rank of the WK and the rank of the BK is identical
to the distance between the file of the WK and the file of BK (that is to say,
both the Kings are positioned on the same diagonal), then it is the case that
there not exists a strategy for the White player leading to a win in less the six
moves”. The only exception to this rule is represented by the five examples
belonging to the anomalous set O1. These examples concern the situation in
which the WK and the BK are, respectively, in c1 and a3, and the RK is on the
4th rank. They state that in order for the White to have a winner strategy,
the RK must stay on the file D or on a subsequent file (in these cases the
White can win in exactly five moves). Indeed, if the RK were on file C, then
White would not win in less than 11 moves. As for the RK on files A and B,
the game terminates with a draw. By considering the full database, the above
rule covers 1,129 example associated either with wins in more than five moves
or draws.

The set O2 = {krk sl(c, 1, a, 8, a, 1)} is positive anomalous. Consider the
associated dual starting theory:

not krk sl(A,B,C,D,C,E)← edge(B), edge(D) 〈93〉.
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This rule states that “when the WR and the BK lie on the same file and at the
same time both the WK and the WR are on a (possibly different) edge rank, it
is the case that the White cannot win within five moves”. As a matter of fact,
c1-a8-a1 (a short for the WK-WR-BK configuration) is the only exception to
such a rule (corresponding to a checkmate). The gain in this case is 0.0358.

In the full database there are 345 configurations captured by the above rule
(all associated either with a depth of win greater than 7 or to a draw). E.g.,
consider the very similar configuration c1-a8-a2 covered by the same rule. In
this case the White wins in 11 moves. Moreover, by relaxing the constraint
that the WR and the BK lie on the same file, the knowledge is no longer valid.
E.g., consider the close configuration c1-c8-a1, corresponding to a win for the
White in only 2 moves.

The positive example setO3 = {krk sl(c, 1, h, 1, a, 1), krk sl(d, 1, h, 1, a, 1),
krk sl(d, 1, h, 1, b, 1)} is anomalous. The associated dual starting theory is:

not krk sl(A,B,C,D,E,D)← edge(B), edge(C) 〈45〉
not krk sl(A,B,C,B,D,E)← edge(B), edge(C) 〈28〉.

The first rule says that “if the WR and the BK are on the same rank, the WK
is on an edge rank and the WR is on an edge file, then it is not the case that
the White wins within five moves”. As for the second rule, it states that “if
the WR is in a corner of the chessboard and the WK is on the same rank, then
the White cannot win within five moves”. The dual ending theory consists of
16 facts, and the gain is 0.013.

Note that in the whole database the two rules cover 345 and 372 examples
respectively, concerning either wins in at least six moves or draws. By observ-
ing the distribution of the number of moves to win of the examples covered by
the second rule, it appears that endgames satisfying the condition there stated
are likely to exhibit a large number of moves to win. E.g., consider the con-
figuration c1-h1-a2, very close to the configurations in the set O3 (the closer
configuration there is c1-h1-a1 that leads to a win in 2 moves). It corresponds
to a win in 12 moves.

The negative example setO4 = {krk sl(b, 1, c, 7, h, 7), krk sl(c, 1, c, 6, h, 6),
krk sl(c, 1, c, 7, h, 6), krk sl(c, 1, c, 7, h, 7)} is anomalous. The associated direct
ending theory is

krk sl(A,B,C,D,E, F )← edge(E), diff(A,E,G), diff(F,H,G) 〈552〉.

This rule covers about the fifty percent of the positive examples. The direct
starting theory contains a lot of facts and the gain 0.500. The associated
knowledge can be stated as follows: “Consider the situation in which the BK
is on an edge file, and let Dist denote the distance between the file of the
WK and the file of the BK. If the rank of the BK is such that there exists
on the chessboard a rank at distance exactly Dist, then it is the case that the
either the game ends in a draw or the White wins in no more than fourteen
moves”. The above knowledge appears to be quite involved. However, it can
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Noise Abnormals Positive Negative Total
(ν) removed Accuracy Accuracy Accuracy

0 93.04% 99.36% 97.26%
2.5% 10 95.81% 99.61% 98.35%

20 97.08% 99.66% 98.80%
0 82.00% 99.29% 93.38%

5% 10 87.06% 99.44% 95.21%
20 89.90% 99.48% 96.21%
0 71.87% 98.71% 89.30%

7.5% 10 78.94% 98.81% 91.85%
20 81.26% 98.97% 92.76%
0 64.43% 98.39% 86.19%

10% 10 68.36% 98.44% 87.63%
20 69.55% 98.55% 88.13%

Table 3: Test accuracy for the Illegal data set in presence of noise after having
removed abnormal sets.

it can be readily and more conveniently rephrased in the next one: “if the
BK is on and edge file and (at least) one of the two diagonals starting at its
square intersects the file of the WK, then it is not the case that the White wins
in more than fourteen moves”. The only exceptions to this rule are the four
examples belonging to the set O4. It covers 7,706 database examples (about
the 27.5% of the total).

7.3.4 Behavior in presence of noise

We wish to stress that the purpose of the approach here introduced is to
gain domain understanding, and that it is not our explicit intention to regard
abnormal sets as a tool for improving generalization.

Clearly, individuals showing an abnormal behavior may prevent the induc-
tion of a compact hypothesis, a condition which in its turn can negatively
affect accuracy. Thus, one may wonder whether removing abnormal sets has
some impact on accuracy or not.

For the Illegal data set a separate test set is available, composed of 3,361
positive examples and 6,639 negative examples (for a total of 10,000 test exam-
ples). The accuracy on the test set of the hypothesis induced on the training
set is close to 100%.

In order to simulate the presence of noise, we flipped at random the sign
of a controlled fraction ν of examples (ν ∈ {2.5%, 5%, 7.5%, 10%}) belonging
to the training set. We then measured the accuracy on the test set of the
hypothesis induced both on the full noisy training set and on the noisy training
set without negative abnormal examples returned by aCBOut for kmax = 5
and α = 0.01.

Table 3 reports the results of the experiment. On the first column there is
the noise level ν, while on the second column there is the number of abnormal
sets removed from the set of examples. On the subsequent columns, the test



Exploiting Domain Knowledge to Detect Outliers 49

accuracy on the positive examples, the negative examples, and the whole set
of examples is reported.

As expected, the test accuracy is directly related to the level of noise addi-
tion. Test accuracy benefits from the removal of abnormal sets. This circum-
stance is mainly evident on the positive class, which in this case is the class
whose test accuracy worsens mostly by injecting noise. On the positive class,
accuracy improves approximatively from four to ten percentage points. The
increase in accuracy is maximum for the intermediate values of noise level here
considered. This can be explained by noticing that the increase of accuracy
depends on some opposing factors, that are the absolute accuracy, the level of
noise addition, and the relative (w.r.t. the number of noisy examples) number
of abnormal examples removed.

8 Conclusions

In this paper, a novel definition of outlier in the context of concept learning
and effective techniques for singling them out have been presented. Our novel
approach is designed for scenarios where there are no examples of normal or
abnormal behavior, hence it is an unsupervised one, even if it has connections
with supervised learning, since it is based on induction from examples.

Importantly, this approach is intended to provide a contribution in the
framework of exploiting domain knowledge in order to improve the process
of detecting outliers. As a matter of fact, most of the techniques presented
in the literature for mining outliers are not able to take advantage of domain
information, while it is clear that being able to incorporate a possibly available
formal description of the domain of interest, e.g. encoded by means of a logic
program, could great improve the quality of the process of outlier discovery.
This direction of research has been only limited explored till now, and we have
pointed out important differences with some techniques related to our one.

A further peculiarity of the introduced approach is to provide a finer char-
acterization of the anomaly at hand, since we are able to distinguishing among
three kinds of abnormalities: irregular, anomalous and outlier observations.

Other than learning more subtle forms of anomalies, we provide explana-
tions for the detected abnormalities in the form of a pair of logic programs
which make intelligible the motivation underlying their exceptionality.

As far as the applicability of our approach, both an exact and two approxi-
mate algorithms to mine abnormalities have been presented. The approximate
algorithms improve execution time with respect to the exact algorithm while
guaranteeing good accuracy. Experimental results confirmed the effectiveness
of the proposed mining technique.
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