
COPYRIGHT NOTICE

This is the author’s version of the work. The definitive version was
published in International Conference on Discovery Science (DS),
October 19-12, 2016, Bari, Italy. Lecture Notes in Computer Sci-

ence, Volume 9956, pp. 359-375, Springer.

The final publication is available at link.springer.com.

DOI: 10.1007/978-3-319-46307-0 23.

i

http://link.springer.com
http://dx.doi.org/10.1007/978-3-319-46307-0_23

Anomaly Detection in Networks
with Temporal Information?

Fabrizio Angiulli, Fabio Fassetti, and Estela Narvaez

DIMES, University of Calabria, Italy
email: {f.angiulli,f.fassetti,e.narvaez}@dimes.unical.it

Abstract. We present a technique for node anomaly detection in networks where
arcs are annotated with time of creation. The technique aims at singling out
anomalies by taking simultaneously into account information concerning both
the structure of the network and the order in which connections have been es-
tablished. The latter information is obtained by timestamps associated with arcs.
A set of temporal structures is induced by checking certain conditions on the or-
der of arc appearance denoting different kinds of user behaviors. The distribution
of these structures is computed for each node and used to detect anomalies. The
anomaly score measures the deviation from the expected number of structures as-
sociated with each node on the basis of the correlation between nodes degree and
numerousness of exhibited structures. The resulting algorithm has low computa-
tional cost and is applicable to large networks. We present experimental results
on some real-life networks showing the reliability of the approach.

1 Introduction

The large use of social networks supplies a huge amount of data which provides much
information about individuals and individual behaviors reflecting human relationship in
the real world. Such behaviors can be model as relational structures among the actors
of the social network.

Among the interesting hidden knowledge that can be mined by analyzing node be-
haviors, a relevant role is played by the anomaly discovery, where the aim is to find
those individuals that can be considered as outliers, since they assume exceptional be-
haviors. The problem of finding malicious nodes in networks is of interest in many areas
such as fake account detection, spammer node detection, ddos attacks in computer net-
works, and many others. Much work has been made to detect anomalous nodes mostly
based on detecting anomalous structures around the individual [1].

However, in many scenarios, the exceptional behavior of an individual has not to
be searched only in the structural composition of its neighborhood but the exceptional
behavior is characterized by the temporal sequence of connection establishments. Thus,
taking into account the time dimension sheds interesting lights on individuals’ behav-
iors. As such, our approach is orthogonal to the works aimed at mining structural prop-
erties of large static networks.
? This research has been partially supported by the PRIN project 20122F87B2 titled “Com-

positional Approaches for the Characterization and Mining of Omics Data” co-financeby the
Italian Ministry of Education, University and Research.

Consider, for example, the individuals registered to the Facebook social network
and arcs between them defined as follows: if a marks b as a friend there is an arc from
a to b and, vice versa, there is an arc from b to a if b marks a as a friend. Thus, the
arc from a to b represents that either a sends a Facebook request to b or a accepts a
Facebook request coming from b.

Consider, now, an individual a with five hundreds friends then with five hundreds
other individuals there is a connection from a and a connection towards a. Clearly,
it is not anomalous since such a number of friends is not so exceptional. But, if a is
always the first to send Facebook friend requests and all the five hundreds just accept
this request (and, then, for any b friends of a the arc from a to b always precedes the arc
from b to a), a becomes a clear outlier.

The problem tackled with in the rest of the paper can be defined as follows:
Anomaly detection in timed networks. Given a timed network, that is a network where
each arc is equipped with a timestamp denoting the time of creation of the correspond-
ing link, find the nodes in the network that are considerably dissimilar with respect to
the rest of the network nodes when both the structure of their neighborhood and the
order in which the structure has been established are taken into account.

Different approaches have been proposed in the literature that search for anomalies
in dynamic networks, among them [6, 4, 3, 5, 2].

We point out that the approach here proposed is substantially different from tech-
niques dealing with dynamic networks. Indeed, our aim is not to determine the points in
time in which a certain portion of the networks (typically a community or a subgraph)
exhibited a significant change, as usually done by dynamic-graph anomaly detection
techniques. Rather, our primary aim is to analyze each single node by taking simulta-
neously into account its temporal footprint.

In this sense our approach can be regarded as a static-graph anomaly detection tech-
nique in which temporal information has a privileged role in characterizing the behavior
of network nodes.

The rest of the work is organized as follows. Section 2 reports preliminary notions
and describe how the individual behavior is modeled; subsequent Section 3 illustrates
the specific behavior models we retrieve to detect outliers; Section 4 is devoted to dis-
cuss the outlier score and its properties; Section 5 presents the several phases of the
mining algorithm; Section 6 depicts the experiments we conduct on real datasets; fi-
nally, Section 7 concludes the work.

2 Behaviors on timed networks

In this section, we report the preliminary definitions and the notations employed through-
out the paper. We aim at modeling the behavior of a node in the network through the
way the node has interacted with its neighborhood during the time. Thus, first of all we
introduce the model of network equipped with time information tackled by the proposed
technique.

Definition 1 (Timed Network). A timed network (or, simply, network) is a tripleN =
(V,E, τ), where V = {v1, . . . , vn} is a set of nodes,E = {e1, . . . , em} is a set of arcs,

v v′

v′′
t1 = 1 t2 = 3

t = 10

t′ = 20

(a)

v v′

v′′
t1 = 1 t2 = 15

t = 10

t′ = 8

(b)

Fig. 1: Example

with each ei = 〈si, di〉 an ordered pair of nodes in V , and τ a function associating each
arc 〈s, d〉 inE with a timestamp representing the instant of time in which the connection
from s to d is established.

Moreover, given a node v, we refer to the set of nodes v′ such that there is an
arc from v to v′ as the set of outgoing neighbors of v (or, simply, neighbors) and we
denote it as

−→
N (v). Vice versa, the set of nodes v′ such that there is an arc from v′

to v is referred to as the set of ingoing neighbors of v and we denote it as
←−
N (v).

Finally, the total number of outgoing and ingoing neighbors is denoted as deg(v), then
deg(v) = |

−→
N (v)|+ |

←−
N (v)|.

Next, we provide formal definition of contact and awareness between nodes that
are exploited for modeling interactions.

Given a networkN = (V,E, τ) and two nodes v and v′in V , we say that v contacts
v′ at time t if 〈v, v′〉 ∈ E and τ(〈v, v′〉) = t. Also, in this case, we say that v′ is a
contact of v starting from the instant of time t.

For example, in Figure 1a, v contacts v′ at time t = 10 and, hence, starting from that time,
v′ is a contact of v.

An interaction between two nodes v and v′ is fired (or established) at time t if either
v contacts v′ at time t or v′ contacts v at time t. In such a case, the established contact
is said to be the contact associated with the interaction.

Given an interaction i between two nodes v and v′, the inverse interaction of i is the
establishment of the contact inverse with respect to the contact associated with i.

Thus, in Figure 1a and 1b, there is an interaction between v and v′ fired at time t = 10
having as associated contact the arc from v to v′ and, then, the inverse interaction between
v′ and v is fired at time t = 20, having as associated contact the arc from v′ to v.

Next we provide the definition of awareness which intends to model the intuition
that an individual knows another individual, which is not one of its contacts, due to the
presence of a common friend.

Definition 2 (Awareness). Given a network N = (V,E, τ) and two nodes v and v′ in
V , we say that the node v is mediately aware (or, simply, aware) of v′ at time ta if there
exists a node v′′ in the network N , such that v contacts v′′ at time t1 , v′′ contacts v′

at time t2, max{t1, t2} ≤ ta and (i) either 〈v, v′〉 is not in E or (ii) ta ≤ τ(〈v, v′〉).
Moreover, we call intermediary the node v′′ responsible of the awareness.

Note that, according to our definition, v is no more aware of v′ once v′ becomes
a contact of v, since with the awareness we want to model the mediated knowledge
between individuals.

In Figure 1a, v is aware of v′ at each instant of time in the range [3, 9]. Starting from the
instant of time t = 10, v′ becomes a contact of v and, then, v is no more aware of v′.
Conversely, in Figure 1b, v is never aware of v′ and, starting from the instant of time t = 10,
v′ becomes a contact of v.

The notions of contacts and awareness are next exploited to model the behavior of
a node within its neighborhood and, in particular, we distinguish between two families
of behaviors: action behavior and reaction behavior.

Definition 3 (Action behavior). Let N be a network, an action is an interaction be-
tween two nodes v and v′ of the network fired before that the inverse interaction is
fired.

Let v be a node of a network N and let v′ be one of its neighbor. According to the
above definition, the action behaviors involving v can be both the establishing of a con-
nection from v to v′ preceding a possibly connection from v′ to v and the establishing
of a connection from v′ to v preceding a possibly connection from v to v′.

Consider Figure 1a. There are two actions involving v: (i) the contact from v to v′ which
is accomplished before that v′ contacts v and (ii) the contact from v to v′′. Consider, now,
Figure 1b. There are again two actions involving v: (i) the contact from v′ to v which is
accomplished before that v contacts v′ and (ii) the contact from v to v′′.

Definition 4 (Reaction behavior). Let N be a network, a reaction is an interaction
between two nodes v and v′ of the network fired after that the inverse interaction is
fired.

The reaction behaviors involving v are both the establishing of a connection from v
to v′ succeeding a connection from v′ to v and the establishing of a connection from v′

to v succeeding a connection from v to v′.

Consider Figure 1a. There is one reaction involving v: the contact from v′ to v which is
accomplished after that v′ contacts v. Consider, now, Figure 1b. There is again one reaction
involving v: the contact from v′ to v which is accomplished after that v contacts v′.

After having defined the concepts of actions and reactions, we can distinguish
among different kinds of actions and reactions on the basis of the properties holding
at the instant of time in which they are performed.

For example, Figures 1a and 1b depict two different kinds of actions:
i. the node (v) is aware of the other node (v′) when performs the action of contacting it

(Figure 1a);
ii. the node (v′) is not aware of the other node (v) when performs the action of contacting

it (Figure 1b).

In the following Section 3 we will describe in details which kinds of actions and reac-
tions are addressed in this work.

The technique we propose aims at detecting outliers on the basis of their behav-
ior taking simultaneously into account and suitably combining actions and reactions.
Specifically, each action–reaction couple models a different scenario and we will de-
note it with the expression A↔ R, where A is the action and R the reaction.

For example, consider the Twitter social network and consider the scenario in which an
individual v starts to follow another individual v′ and v′ does not follow back v. There, we
can individuate an action performed by v and received by v′ and a reaction performed by v′

(the decision of not following back v) and received by v.

For each scenario there are several involved performers: there is the performer who
makes the action, the performer who receives the action, the performer who makes
the reaction, the performer who receives the reaction and, in some cases, the performer
involved as intermediary. Thus, on each scenario a node can play different roles. We call
structure the coupling of role and scenario. Each structure defines a precise role played
on a precise scenario and is referred to a single node called actor of the structure.

The previous example induces, then, four structures:
s1: node making action (who decides on its own initiative to follow another node);
s2: node receiving action (who is followed by another node on its own initiative);
s3: node making reaction (who decides to do not follow back a node by which it was

followed);
s4: node receiving reaction (who is not followed back by a followed node).

For structures s1 and s4 the actor is v while for the structures s2 and s3 the actor is v′.

Hence, once actions and reactions have been defined, those draw several scenarios
and relative roles played. Scenarios and associated roles induce a set of S structures
which encodes the node behavior. In particular, evaluating how frequently a node v
plays each possible role on each scenario (then, how frequent v is the actor of each
structure) leads to the building of the vector φ(v) = (φs1(v), . . . , φsk(v)) which rep-
resents the distribution of the roles played by the node on the different scenarios and
φsi(v) represents how frequently v is the actor of the structure si. This distribution
semantically encodes the behavior of the node in the network and can be effectively
exploited to find anomalous individuals, as detailed in the Section 4.

3 Modeled behaviors

This section is devoted to present the behaviors considered. In particular, we present
the kinds of actions and reactions we capture to gather information for modeling the
overall node behavior. However, the approach is easily extensible to cover other kinds
of actions/reactions.

Given a node v and one of its neighbor v′, next we present the actions taken into
account to model the behavior of v and start by summarizing the notation employed:

t the instant of time τ(〈v, v′〉) associated with 〈v, v′〉;
t′ the instant of time τ(〈v′, v〉) if 〈v′, v〉 ∈ E; if 〈v′, v〉 is not in E then t′ is set to
−1, meaning that it is not defined;

v v′

t1 = 5 t2 = 15

t = 10

t′ = 20

(a) Action 1

v v′

vM
t1 = 5 t2 = 8

t = 10

t′ = 20

(b) Action 2

Fig. 2: Action behaviors

tM the greatest instant of time smaller than t such that v is aware of v′ at time tM
due to the intermediary v′′, and we refer as vM the node v′′; if v was not aware
of v′ when the connection from v and v′ has been established then tM is set to
−1, meaning that it is not defined.

For the sake of readability, we employ def(t) for indicating that t 6= −1 and undef(t)
for indicating that t = −1.

For each considered action/reaction, we discuss the semantic behavior associated
with it together with the conditions to be checked in order to verify if the behavior
under analysis is actually assumed.

(Action 1) a node contacts another node on its own initiative.
This action represents that v contacts v′ before that v′ contacts v and without
v being aware of v′ (see Fig. 2a).

Condition: (undef(t′)∨ t ≤ t′)
∧
undef(tM)

(Action 2) a node contacts another node due to an intermediary.
This structure means that v contacts v′ before that v′ contacts v but after that
v becomes aware of v′ (see Fig. 2b).

Condition: (undef(t′)∨ t ≤ t′)
∧
def(tM)

∧
tM < t

As for the reactions, we capture four kinds of reactions for v. Note that, since these
are reactions, we assume that either a connection from v to v′ or a connection from v′

to v has already been fired.

(Reaction 1) a node directly replies to the node who contacts him:
This reaction models that v′ contacts v since v contacts v′ and not because
v′ becomes aware of v (see Fig. 3a).

Condition: def(t)
∧
def(t′)

∧
t < t′

∧
(undef(t′M)∨ t′M < t)

(Reaction 2) a node replies to the node who contacts him due to an intermediary:
This reaction represents that v′ contacts v after that v contacts v′ but only
after that v′ becomes aware of v (see Fig. 3b).

Condition: def(t)
∧
def(t′)

∧
def(t′M)

∧
t < t′M < t′

(Reaction 3) a node does not reply to the node who contacts him:
This is not an actual reaction since it represents that v′ does not react to

v v′

t = 10

t′1 = 12t′2 = 25

t′ = 20

(a) Reaction 1

v v′

v′
M

t = 10

t′1 = 12t′2 = 15

t′ = 20

(b) Reaction 2

v v′

t = 10

t′1 = 12t′2 = 15

(c) Reaction 3

v v′

t = 10

t′1 = 12t′2 = 15

t′ = 10

(d) Reaction 4

Fig. 3: Reaction behaviors

the action performed by v (see Fig. 3c).
Condition: def(t)

∧
undef(t′)

(Reaction 4) a node contacts the node who contacts him independently:
This is not an actual reaction since it represents that v′ contacts v on its
own initiative (see Fig. 3d).

Condition: def(t)
∧
def(t′)

∧
t′ = t

∧
undef(t′M)

Once actions and reactions are defined, we can analyze which scenarios are mod-
eled and which structures are induced. In particular, we have eight different scenarios
and for each scenario two roles are definable, the node who acts and the node who re-
acts. Moreover, for scenarios involving action A2 and/or reaction R2, also the role of
intermediary is definable.

Thus, focusing on a single node v, we can define seventeen structures for it:
structures s1 . . . s4: v plays the role of performing action A1 and receiving one of

the possible four reactions;
structures s5 . . . s8: v plays the role of performing action A2 and receiving one of

the possible four reactions;
structures s9 . . . s12: v plays the role of receiving action A1 and performing one of

the possible four reactions;
structures s13 . . . s16: v plays the role of receiving action A2 and performing one of

the possible four reactions;
structure s17: v plays the role of being the intermediary of a couple of inter-

acting nodes.

Fig. 4: Example of bandwidths associated with the score of a structure (left) and exam-
ple highlighting the top twenty anomalies on a real dataset (right).

For example, consider the scenario depicted in Figure 1a again: v contacts v′ after viewing
that v′ is a contact of v′′ which is one of its contact. v′ reacts to this contacting back v. The
scenario is then A2 ↔ R1 and the roles are: (1) who makes the action A2 and receives the
action R1, (2) who receives the action A2 and makes the reaction R1, and (3) who plays the
role of intermediary. Thus, after analyzing this scenario, for the node v we have to update
the structure associated with (1), that is s5; for the node v′ the structure associated with (2),
that is s13; and for the node v′′ the structure associated with (3), that is s17.

4 Anomaly Score

The distribution φs(v) encodes the behavior of the node v in terms of how much fre-
quently it is involved in the different structures. We can then exploit the distributions
φs in order to determine how typical is the behavior of each node with respect to the
whole population. With this aim, an anomaly score is assigned to each node.

Given the network N = (V,E, τ), for each structure s ∈ S the regression line of
the set of points Ps(N) = {(deg(vi), φs(vi)) | vi ∈ V } is computed.

Let αs and βs denote be the parameters of the estimated line. The anomaly score of
the node vi with respect the structure s is defined as:

scs(vi) =

∣∣∣∣φs(vi)− [αs · deg(vi) + βs]

log2 (1 + deg(vi))

∣∣∣∣ (1)

The numerator of Equation (1) represents the deviation of the observed number of struc-
tures φs(vi) from the expected one yi, according to the value predicted by the regression
curve yi = αs ·deg(vi)+βs. As for the denominator, it serves the purpose of taking into
account the cardinality of the neighborhood of vi, while the absolute value is needed to
capture both the upper tail and the lower tail of resulting distribution.

Figure 4 on the left reports a regression line (the solid curve for k0 = 0, having
parameters α = 0.1 and β = 50) and the bandwidths associated with different values
of anomaly score (specifically, for k1 = 10, k2 = 25, and k3 = 50; e.g., the score
associated with points falling within the dashed bandwidth will be not greater than k1).

v v′

v′1

v′h

v1

vk

t1,1 t2,1

t1,k t2,k

t

t′1,1t′2,1

t′1,ht′2,h

t′

(a) analyzed pattern

v v′

t, tM , vM

t′, t′M , v
′
M

where tM = max{ti = max{t1,i, t2,i} | ti < t}
vM = vi s. t. max{t1,i, t2,i} = tM

t′M = max{t′i = max{t′1,i, t′2,i} | t′i < t′}
v′M = v′i s. t. max{t′1,i, t′2,i} = t′M

(b) annotated graph

Fig. 5: Graph annotation (Phase 1)

Figure 4 on the right reports the structure distribution associated with a real dataset and
the top twenty anomalies according to Equation (1).

Scores associated with each single structure are then normalized in order to make
them homogeneous

ŝcs(vi) =
scs(vi)

std({scs(v)})
(2)

and, hence, expressed in terms of number of standard deviations.
The anomaly score of a node vi is

sc(xi) =
∑
s

scs(xi), (3)

that is obtained by combining the scores computed with respect to the single structures.

5 Algorithm

In this section the algorithm we designed to mine outliers is presented and its properties
are discussed. The algorithm consists in three main phases each accounted next.

Phase 1. This phase has the intent of enriching the information associated with the arcs
(see Figure 5). In order to retrieve behaviors illustrated in Section 3 we need to find,
for each arc 〈v, v′〉 with associated timestamp t, if v is aware of v′ at time t, namely
we have to search for a node v̂ such that both edge e1 = 〈v, v̂〉 and edge e2 = 〈v, v̂〉
exist and the timestamps t1 and t2 associated with these edges are both strictly smaller
than t. Among these nodes, we are interested in the node vM which is the most recent

responsible of the fact that v is aware of v′. Finally, the edge e = 〈v, v′〉 is annotated
with the node veM and the time teM which is the instant of time starting by which v is
aware of v′ due to veM ; in formula teM is the maximum between the time associated
with the arc 〈v, veM 〉 and the time associated with the arc 〈veM , v′〉. Concluding, given
a network N = (V,E, τ), the phase returns the annotated network N+ = (V,E, τ+)
where τ+(e) returns the triple (τ(e), teM , v

e
M).

Computational complexity of Phase 1. As for the cost of this phase, letN = (V,E, τ)
be the analyzed network, let n = |V | and let m = |E|. We iterate over the set of edges
and for each arc e = 〈v, v′〉 in E we iterate over the set

−→
N (v) of neighbors of v in order

to search vM and, then, for each neighbor v̂ of v we have to check if there exists an arc
from it to v′. This latter operation can be performed through a binary search in the list
of the outgoing arcs of v̂. Thus, the overall cost is∑

〈v,v′〉

∑
v̂∈
−→
N (v)

log
−→
N (v̂) = O(m · n · log n) (4)

where n denotes the mean number of neighbors of nodes in the networks.

Phase 1: Network information enrichment
Input: A networkN = (V,E, τ)
Output: The annotated networkN+

1 foreach edge e = 〈v, v′〉 in E do
2 let t = τ(e) be the timestamp associated with the edge from v to v′;
3 set tM to −1;
4 set vM to ∅;
5 foreach edge ê = 〈v, v̂〉 do
6 let t1 = τ(ê) be the timestamp associated with the edge from v to v̂;
7 if 〈v̂, v′〉 belongs to E then
8 let t2 = τ(〈v̂, v′〉) be the timestamp associated with the edge from v̂ to v′;
9 let t̂ be max{t1, t2};

10 if tM < t̂ < t then
11 set tM to t̂;
12 set vM to v̂;

13 associate tM and vM with the e;
// then substitute τ(e) = t with τ+(e) = (t, tM , vM)– see Fig. 5

Phase 2. This phase has the intent of mining the behavior of each individual in the
network, starting from the annotated network coming from the previous phase. Then,
given an annotated network N+ = (V,E, τ+) we iterate over the set of nodes V and
for each node v in V we iterate over the set of neighbors and for each neighbor v′

in
−→
N (v) the behaviors depicted in Section 3 are evaluated. In particular, through the

information provided by N+ the conditions associated with the behaviors are checked

and, according to the result of the check, the behavior counters are updated. The result
of this phase is then the distribution of the behaviors for each node.
Computational complexity of Phase 2. As for the cost of this phase, let N+ =
(V,E, τ+) be the analyzed network, let n = |V | and let m = |E|. Iterating over the
set of nodes and for each node v iterating over the set of neighbors

−→
N (v) corresponds

to iterating over the set of edges. For each edge, in constant time we can obtain the
required information by N+ and we can evaluate all the conditions. Since the number
of conditions is fixed, also this latter step can be accomplished in constant time. Thus,
the overall cost of this phase is O(m).

Phase 2: Structures computation
Input: An annotated networkN+ = (V,E, τ+)
Output: The distribution of structures φv for each node v

1 foreach node v in V do
2 set φs(v) to 0 for each structure s;
3 foreach neighbor v′ of v do
4 extract tuple T =

(
τ+(〈v, v′〉), τ+(〈v′, v〉)

)
;

// T contains then (t, tM , vM , t
′, t′M , v

′
M)– see Fig. 5b

5 foreach action a do
6 foreach reaction r compatible with a do
7 let s be the structure associated with the pair a↔ r;
8 if Ca(T) and Cr(T) then
9 update φs(v);

10 if a↔ r involves node vM then
11 update φŝ(vM);

Phase 3. This phase has the intent of detecting outlier individuals. Starting from the dis-
tribution of behaviors computed by the previous phase, we have to compute the outlier
score as defined in Section 4. The first step consists in computing, for each considered
structure, the regression line. The second step consists in computing for each structure s
and for each node v the score scs(v) achieved by node v on the structure s by means of
Equation (1). Next the standard deviation of the scores assumed by nodes on structure
s is computed and, then, this value is exploited to normalize the scores (lines 6–7).

After that all the structures have been analyzed, the outlier score of each node v is
computed by properly aggregating the score achieved by v on each single structure by
means of Equation (3).
Computational complexity of Phase 3. As for the cost of this phase, let N+ =
(V,E, τ+) be the analyzed network, let n = |V | and let m = |E|. Computing the
regression line has a cost linear with respect to the number n of nodes. Next, for each
node we had to compute the score. Since Equation (1) is computable in constant time,
also this step has a cost linearly dependent from n. Normalizing the scores costs O(n)
as well and, finally, also computing the overall outlier score costs O(n) since Equation
(3) iterates over a fixed number of structures.

Phase 3: Outlier mining
Input: The distribution of structures φv for each node v
Output: The overall outlier score for each node v

1 foreach structure s do
2 compute the regression line of the observations (deg(v), φs(v));
3 foreach node v inN do
4 compute the score scs(v) of v for structure s through Eq. (1);

5 compute the standard deviation of the score std({scs(v)});
6 foreach node v inN do
7 compute the normalized score of v for structure s through Eq. (2);

8 foreach node v inN do
9 compute the overall score of v through Eq. (3);

6 Experimental results

In this section experimental results concerning the introduced technique are presented.
All the datasets employed are from the Online Social Networks Research. All the dataset
underwent a preprocessing during which multiple and self links have been removed.
The Digg friends dataset1 contains data about stories promoted to Digg’s front page2

over a period of a month in 2009. The dataset contains Digg users who have voted for a
story. We considered the voters’ friendship links, where a link user_id→ friend_id

means that user_id is watching the activities of (is a fan of) friend_id. User iden-
tifiers are available already anonymized. The network analyzed consists of 279, 631
nodes and 2, 251, 166 arcs. The Facebook wall dataset3 contains a list of all of the wall
posts from the Facebook New Orleans network. Each line contains two anonymized
user identifiers, meaning the second user posted on the first user’s wall. The third col-
umn is the times of the wall post. The network analyzed consists of 45, 813 nodes and
264, 004 arcs. The Wikipedia growth4 dataset contains links between Wikipedia pages
and the time when these links were first created. The dataset represents the complete
history of the network over a period of 826 days, between January 1st, 2005 and April
6th, 2007. The datasets is anonymized to protect the privacy of page authors. The net-
work analyzed consists of 1, 870, 709 nodes and 39, 953, 145 arcs.

The following table reports the total number of the structures mined, for each of
the structures si in the set S. Notice that the total counts associated with the pairs of
structures (si, si+8) are identical, since these structures are induced by symmetric roles
in the same scenario.

1 http://www.isi.edu/integration/people/lerman/downloads.html
2 Digg is a news aggregator (http://digg.com) aiming to select stories for the Internet

audience such as science, trending political issues, and viral Internet issues. It allows people
to vote web content up or down.

3 http://socialnetworks.mpi-sws.org/data-wosn2009.html
4 http://socialnetworks.mpi-sws.org/data-wosn2008.html

(a) Digg dataset – s3 (b) Digg dataset – s11

(c) Facebook dataset – s9 (d) Facebook dataset – s11

(e) Wikipedia growth dataset – s5 (f) Wikipedia growth dataset – s17

Fig. 6: Structure count distribution.

Structure Digg friends Facebook wall Wikipedia growth
s1, s9 61, 122 57, 476 2, 030, 550
s2, s10 8, 307 4, 167 641, 677
s3, s11 683, 282 74, 268 22, 416, 947
s4, s12 6, 294 0 7, 596
s5, s13 65, 844 16, 319 451, 128
s6, s14 44, 301 2, 629 293, 043
s7, s15 681, 317 28, 552 10, 694, 970
s8, s16 152 0 56
s17 1, 009, 571 80, 042 14, 052, 936

Total 7, 574, 125 446, 864 87, 124, 870

Clearly, this does not mean that they are redundant, since the respective counts
per node differ in general, being different the number of times in which the single
node plays each role in the same scenario. In the Facebook wall dataset the structures
s4, s8, s12, and s16, capturing the simultaneity of the response, are not present since
timestamps are almost all different (only 846 timestamps appear more than once in the
dataset) and it is never the case that two users simultaneously make a post on the re-

(a) (b)

Fig. 7: Notable structure distributions for a top outlier node

Fig. 8: Scalability analysis.

spective wall. In general, these structures are among the less numerous in these datasets
due to the fine granularity of the temporal scale.

Figure 6 shows the scatter plots of the node degree versus the structure count for
some of the structures mined. Each plot reports also the regression line of the points
(represented by the red points) and highlights the top 20 anomalies (the red circled
points) according to the anomaly score of Equation (1).

Next, we discuss on the knowledge mined for one of the top outlier in a dataset in
order to highlight how the proposed technique is able to provide not only the outlier
score but also an in intelligible interpretation of the score, shedding light on semantic
underlying the decision made by the technique of signaling a node as anomalous.

Specifically, we focus on the Wikipedia growth dataset and on the node out having
id 256, 356. We consider the two structures that mostly contribute to the large score
achieved by out. Figure 7 reports how the number of times in which out is actor of
structure s1 and s11 places the node with respect to the number of times in which the
other nodes perform as actors of those structures.

It is clear by the plots that out is located in both cases at the margin of the distri-
bution. In particular, out performs as actor of structure s1 much more times than other
nodes, while performs as actor of structure s11 much less times than nodes having a
similar neighborhood cardinality.

From a semantic point of view, these plots naturally lead to a description of the
outlierness that could explain the exceptionality of the node. Since out very often plays
as actor for structure s1, the associated Wikipedia page has a high number of links and,
exceptionally, almost always the linked page links back the page associated with out.

Moreover, since out rarely plays as actor for structure s11, whenever out is linked by a
page p, rarely a link to p does not appear in out.

Finally, Figure 8 shows the scalability of the method. We varied the size of the
datasets, from the 1% to the 100% of the original data, by randomly sampling nodes
and retaining the arcs linking only pairs of nodes in the selected sample. The solid lines
in the plot show the total execution time versus the number of arcs of the network. The
dashed lines represents the cost of the method in the average case, as reported in Equa-
tion (4), with a constant prefactor computed in a way such that the two curves start from
the same point. The curves show that the actual cost of the method is generally below
that predicted by the cost analysis, thus confirming the applicability of the method to
large networks. To illustrate, the full Wikipedia growth dataset was processed in about
120 seconds on a Intel Core i7 2.40GHz equipped machine under the Linux operating
system.

7 Conclusions

We considered the anomaly detection in timed networks problem whose goal is to sin-
gle out anomalies by taking into account simultaneously information concerning both
the structure of the network and the order in which connections have been established.
Our primary aim is to analyzing each single node by taking simultaneously into ac-
count its temporal footprint. We defined a set of spatio-temporal structures is induced
by checking certain conditions on the order of arc appearance denoting different kinds
of user behaviors and exploited their distribution to detect anomalies. We presented a
scalable algorithm and experimental results showing the peculiarity of the knowledge
mined by our technique and its applicability to the analysis of large networks.

References

1. Akoglu, L., Tong, H., Koutra, D.: Graph based anomaly detection and descrip-
tion: a survey. Data Mining and Knowledge Discovery 29(3), 626–688 (2015),
http://dx.doi.org/10.1007/s10618-014-0365-y

2. Chen, Z., Hendrix, W., Samatova, N.F.: Community-based anomaly detection in evolutionary
networks. Journal of Intelligent Information Systems 39(1), 59–85 (2012)

3. Gupta, M., Gao, J., Sun, Y., Han, J.: Community trend outlier detection using soft temporal
pattern mining. In: Machine Learning and Knowledge Discovery in Databases, pp. 692–708.
Springer (2012)

4. Ji, T., Yang, D., Gao, J.: Incremental local evolutionary outlier detection for dynamic social
networks. In: Machine Learning and Knowledge Discovery in Databases, pp. 1–15. Springer
(2013)

5. Mongiovi, M., Bogdanov, P., Ranca, R., Singh, A.K., Papalexakis, E.E., Faloutsos, C.:
Netspot: Spotting significant anomalous regions on dynamic networks. In: Proceedings of the
13th SIAM international conference on data mining (SDM), Texas-Austin, TX. SIAM (2013)

6. Wang, T., Fang, C.V., Lin, D., Wu, S.F.: Localizing temporal anomalies in large evolving
graphs. In: Proceedings of the 2015 SIAM International Conference on Data Mining. pp.
927–935. SIAM

