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Abstract—The availability of cost-effective data collections
and storage hardware has allowed organizations to accumulate
very large data sets, which are a potential source of previ-
ously unknown valuable information. The process of discovering
interesting patterns in such large data sets is referred to as
data mining. Outlier detection is a data mining task consisting
in the discovery of observations which deviate substantially
from the rest of the data, and has many important practical
applications. Outlier detection in very large data sets is however
computationally very demanding and currently requires high-
performance computing facilities. We propose a family of parallel
algorithms for Graphic Processing Units (GPU), derived from two
distance-based outlier detection algorithms: the BruteForce and
the SolvingSet. We analyze their performance with an extensive
set of experiments, comparing the GPU implementations with the
base CPU versions and obtaining significant speedups.

I. INTRODUCTION

In the last twenty years, the availability of cost-effective
data collection and storage hardware has induced an unprece-
dented accumulation of very large data sets in organizations of
all dimensions and kinds. The process whose aim is to discover
interesting patterns in such large data sets is referred to as
data mining [1]. Many problems related to fundamental data
mining tasks, like association rule discovery, data clustering
and classifier learning, are difficult [2], [3], and also heuristic
and approximate approaches are computationally demanding
in practice. For this reason, a large amount of research
in data mining has been directed to the design of parallel
and distributed algorithms for high-performance computing
architectures, in order to cope with the complexity of data
mining problems [4]. The vast majority of non-sequential algo-
rithms has been designed for the Distributed Memory Machine
(DMM), and utilized on clusters of workstations or parallel
supercomputers. Recently, Graphic Processing Units (GPU)
with hundreds or thousands of cores have become widely
available, and shared memory algorithms for fundamental data
mining tasks exploiting the architecture of such many-core
graphic processors have been proposed [5], [6].

Outlier detection, or anomaly detection, is a data mining
task consisting in the discovery of observations which deviate
substantially from the rest of the data, raising the hypothesis
that they were generated by a different mechanism [1]. Outlier
detection provides information which is readily usable to
react in critical situations; therefore, it has many important
practical applications in domains such as medical anomaly
detection, sensor networks, industrial damage detection, cyber-
intrusion detection, fraud detection, image processing, and
textual anomaly detection [7]. Outlier detection is also one

of the most computationally demanding data mining tasks,
and its application to very large data sets currently requires
high-performance computing facilities. For this reason, non-
sequential outlier detection algorithms have already been pro-
posed. Most algorithms have been designed for DMMs [8], [9],
[10], [11], [12], [13], and only a few for the shared memory
machine, in particular for execution by a Graphic Processing
Unit (GPU) [14], [15].

Our objective is to test the effectiveness of a GPU–
based solution for distance-based outlier detection; the im-
plementation is based on CUDA, a high–level programming
environment for GPU. Our contributions are the following:

1) implementation for a GPU architecture of BruteForce
and SolvingSet algorithms, to be used as baselines in
comparisons;

2) implementation of several variants of the above algo-
rithms, to experiment the effects of different usages
of the memory hierarchy and of different implemen-
tation and optimization techniques;

3) execution of an extensive set of experiments including
five different datasets, both synthetic and real, with
dimensionality from two to ten, size up to more than
one million, varying number of considered nearest
neighbors, implemented and tested on a GPU hard-
ware platform.

The structure of the paper is the following. Section II
discusses the literature on parallel and distributed outlier
detection. Section III recalls the base, the centralized algo-
rithms, also labelled as CPU algorithms, and introduces and
discusses the various GPU algorithms. Section IV describes
the experimental setting and presents the results, mainly in
terms of speedups of the GPU algorithms with respect to the
CPU base algorithms and section V concludes the paper.

II. RELATED WORK

A. Parallel outlier detection

Hung and Cheung [8] presented PENL, a parallel version of
NL [16], a block-oriented, I/O optimized nested loop algorithm
to detect (p, δ) outliers, defined as objects lying within distance
δ from at most a fraction p of the objects of the data set. PENL
omits outlier ranking and an appropriate value of the parameter
δ must be determined.

A parallel version of Bay’s algorithm has been proposed by
Lozano and Acuña [9]. Bay’s algorithm [17] iteratively loads
consecutive blocks of objects in main memory. For each block,



it scans the data set and for every retrieved object updates
the neighborhood of the objects in the block. A cutoff outlier
score is maintained; block objects having a score lower than
the current cutoff are removed from the block. The outlier
score is any function which is anti-monotonic in the nearest
neighbor distances. Any such function can not increase under
unions. Exploiting this fact, in Lozano and Acuña’s algorithm,
in every phase each processor scans its local data set in parallel
and updates the neighborhood of the objects of the same data
block maintaining a local cutoff. The neighborhoods are then
merged at a master node, which distributes the global cutoff
to all processors. The definition of distance-based outlier is
compatible with ours. However, the scalability of the method
is not consistent and the sensitivity of the centralized version
to the order and distribution of the data are not discussed.

A parallel version of the Local Outlier Factor (LOF)
algorithm is proposed in the same paper [9]. In LOF, the
outlier status of a point is determined by averaging the ratio
of the density of the point and a neighbor, over all the point’s
k nearest neighbors. The density of a point is computed as
the inverse of the averaged so-called reachability distances of
the point with respect to its k nearest neighbors, where the
reachability distance of a point p with respect to a second
point q selects either the k nearest neighbor distance of q,
if the p is one of q’s k nearest neighbors, or the distance
between the two points, otherwise. The main complexity
source in LOF is the computation of the k nearest neighbors
for all points. In Lozano and Acuña’s parallel approach, each
processor computes the k nearest neighbors of its data. The
master site collects the results, computes the global neighbors
and the LOF of all points. Alshawabkeh, Jang, and Kaeli
[14] designed and tested an intrusion detection system based
on LOF. The authors show that their GPU implementation
outperforms a CPU implementation by up to two orders of
magnitude, thereby providing a practical method for intrusion
detection. Approaches based on LOF locally estimate density
to define outliers, and therefore discover outliers different
than our approach does. On the other hand, LOF essentially
employs a local k nearest neighbor estimate, resulting in a
overall higher complexity of the method.

Finally, Matsumoto and Hung [15] propose a GPU-
accelerated approach to the detection of outliers with uncertain
data, following the outlier definition given in [18]. The method
differs from ours as we not consider uncertainty in data values.

B. Distributed outlier detection

Algorithms designed for DMMs have also been proposed.
Otey, Ghoting and Parthasarathy in [10] and Koufakou and
Georgiopoulos in [11] proposed algorithms for distributed
high-dimensional data in which outliers are defined on support,
instead of distances. Such approaches are therefore completely
different from ours. Dutta, Giannella, Borne and Kargupta [19]
proposed algorithms for distributed principal components and
top-k outlier detection, in which top-k outliers are deviant
objects with respect to correlation: their sum of squared values
in a fixed number of lowest-order, normalized principal com-
ponents is at most the k-th largest such sum. This definition
has no relation with the one employed in this work.

Besides differing in the way outliers are defined, these
approaches differ from ours in that the focus is not on

achieving the maximum speedup possible with a given number
of processors, but to avoid the transmission of the entire data
set to all processors, because it is assumed the processors
reside at different nodes of a communication network with
limited bandwidth.

III. ALGORITHMS

In this section we describe a family of parallel algorithms
for computing the top n distance-based outliers in a GPU. The
algorithms are derived either from the BruteForce algorithm
or the SolvingSet algorithm [20], and are designed to be
implemented as parallel programs suitable for execution on
a GPU.

A. Weights and outliers

In the following, we assume a data set D of objects, which
is a finite subset of a given metric space.

Definition III.1 (Outlier weight) Given an object p ∈ D, the
weight wk(p,D) of p in D is the sum of the distances from p
to its k nearest neighbors in D.

Definition III.2 (Top n outliers) Let T be a subset of D
having size n. If there not exist objects x ∈ T and y in (D\T )
such that wk(y,D) > wk(x,D), then T is said to be the set of
the top n outliers in D. In such a case, w∗ = minx∈T wk(x,D)
is said to be the weight of the top n-th outlier, and the objects
in T are said to be the top n outliers in D.1

B. Sequential algorithms

1) The BruteForce algorithm: A sequential nested-loop
algorithm to detect top-n outliers is described in Figure 1.
The algorithm initially creates a min heap Top of n elements
to store the top-n outliers and one max heap nn of k elements
for each data point to store its k nearest neighbors. For each
data point P having index i, the points having greater or equal
index are accessed, and their distance from P are inserted
both into their own heap and into the heap of P using the
method updateMin. A distance value is inserted into the heap
by updateMin if the heap is not full, or its maximum element
exceeds the value. In the latter case, the maximum element is
deleted. The method updateMax inserts the weight of P into
the outlier heap Top, if the heap is not full, or the weight
exceeds its minimum element. In the latter case, the minimum
element is deleted.

The worst-case complexity of the BruteForce algorithm is
Θ(|D|2 log k), and its best-case complexity is Ω(|D|2), which
makes it unsuitable for many data sets in real data mining
applications. However, it can be readily noted that the outer
loop of the algorithm fails to omit points which cannot be
outliers. Let us call the sum of the distances of a point P from
the points in its heap P .nn the current weight of P . Obviously,
if P .nn is full, then the current weight of P cannot increase.
Since the minimum weight w′ of points in the outlier heap
Top is a lower bound to the weight of a top-n outlier, any

1In case of ties on the weight values, some objects y in (D \ T ) such
that wk(y,D) = w∗ could exist. In this case, the objects x in T such that
wk(x,D) = w∗ are nondetermistically selected among those scoring the
same value of weight.
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Input: Data set D, integer number n of outliers, integer number
k of nearest neighbors, a distance function dist(·, ·).
Output: Set of the top-n outliers of D.

NestedLoopOutliers(D , n, k, dist) {
Top = MinHeap.create(n);
for i = 1 to D .count

D .get(i).nn = MaxHeap.create(k);
for i = 1 to D .count {

P = D .get(i);
for j = i to D .count

if i == j
then P .nn.updateMin(0);
else {

Q = D .get(j);
d = dist(P ,Q);
P .nn.updateMin(d);
Q .nn.updateMin(d);

}
Top.updateMax(P , P .nn.sum());

}
return(Top.getElements());

}

Fig. 1. The BruteForce algorithm.

point having a full heap and a current weight smaller than w′

should be excluded from further processing.

This optimization, among others, is part of the SolvingSet
algorithm.

2) The SolvingSet algorithm: In the sequel, we recall the
notion of solving set and the SolvingSet algorithm.

Definition III.3 (Outlier Detection Solving Set) An outlier
detection solving set S is a subset S of D such that, for each
y ∈ D \ S, it holds that wk(y, S) ≤ w∗, where w∗ is the
weight of the top n-th outlier in D.

A solving set S always contains the set T of the top n outliers
in D. Furthermore, a solving set can be used to predict novel
outliers [20]. Our goal is to compute both a solving set S and
the set T .

The SolvingSet algorithm is described in Figure 2. At each
iteration (let us denote by j the generic iteration number),
the SolvingSet algorithm compares all data set objects with a
selected small subset of the overall data set, called Cj (for
candidate objects), and stores their k nearest neighbors with
respect to the set C1 ∪ . . .∪Cj . From these stored neighbors,
an upper bound to the true weight of each data set object can
thus be obtained. Moreover, since the candidate objects have
been compared with all the data set objects, their true weights
are known.

The objects having weight upper bound lower than the
n-th greatest weight associated with a candidate object, are
called non active (since these objects cannot belong to the
top-n outliers), while the others are called active. At the
beginning, C1 contains randomly selected objects from D,
while, at each subsequent iteration j, Cj is built by selecting,
among the active objects of the data set not already inserted
in C1, . . . , Cj−1 during the previous iterations, the objects
having the maximum current weight upper bounds. During the

computation, if an object becomes non active, then it will not
be considered anymore for insertion into the set of candidates,
because it cannot be an outlier. As the algorithm processes new
objects, more accurate weights are computed and the number
of non active objects increases. The algorithm stops when no
more objects have to be examined, i.e. when all the objects not
yet selected as candidates are non active, and thus Cj becomes
empty. The solving set is the union of the sets Cj computed
during each iteration.

Input: Data set D, a distance function dist(·, ·), integer number n
of outliers, integer number k of nearest neighbors, integer number
m of candidate points.
Output: Solving set of D, set of the top-n outliers of D.

SolvingSet(D , dist , n, k,m) {
SolvSet = ∅;
Top = MinHeap.create(n);
for i = 1 to D .count

D .get(i).nn = MaxHeap.create(k);
Cand .set(D .RandomSelect(m));
while Cand .count ̸= 0 {

SolvSet = SolvSet ∪ Cand .getElements();
D = D − Cand ;
for i = 1 to Cand .count {

P = Cand .get(i);
for j = 1 to Cand .count {

Q = Cand .get(j);
d = dist(P ,Q);
P .nn.updateMin(d);
if i ̸= j then Q .nn.updateMin(d);

}
}
NextCand = MinHeap.create(m);
for i = 1 to D .count {

P = D .get(i);
for j = 1 to Cand .count {

Q = Cand .get(j);
if max(P .nn.sum(),Q .nn.sum()) ≥ Top.Min() {
d = dist(P ,Q);
P .nn.updateMin(d);
Q .nn.updateMin(d);

}
}
NextCand .updateMax(P , P .nn.sum());

}
for i = 1 to Cand .count

Top.updateMax(Q ,Q .nn.sum());
Cand .set(NextCand .getElements());

}
return(⟨SolvSet ,Top.getElements()⟩);

}

Fig. 2. The SolvingSet algorithm.

C. Parallelizing the BruteForce algorithm on the GPU

The BruteForce algorithm is amenable to parallelization by
assigning threads to different portions of the distance matrix
and updating nearest neighbor heaps efficiently. We present in
the sequel two GPU algorithms following this approach.

1) The GPU-BruteForce algorithm: Kato and Hosino [21]
presented a technique to compute on a GPU the result of a
set of k nearest neighbors queries over a data set of points. A
solution to such problem can be easily exploited for solving the
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top-n outlier problem, in two steps: after computing a k nearest
neighbor list for each point, the points are ranked according
to their weight. In the first step, the distance matrix is divided
into groups of consecutive rows. Each group is assigned to
a block and each row in the group is assigned to a thread
of the block. Each thread loads a column of the matrix into
the shared memory of the block, and computes the distance
between the points corresponding to the row and column. In
the second step, matrix cells in the same row, separated by
a stride that equals the number of threads in the block, are
assigned to a thread. The assigned cell values are inserted into
a thread buffer when they are smaller than the k-th nearest
neighbor distance of a max heap pertaining to the block. The
buffer elements are then inserted into the heap. Finally, using a
multiblock reduction technique the points having the n largest
weights are selected.

2) The GPU-BruteForce-SH algorithm: A variant of the
previous algorithm employs a different, simpler technique to
update the heaps. To each point a thread is assigned, which
updates the heap of the point by inserting all distances into it.
Distances are computed using the same technique utilized in
GPU-BruteForce.

D. The GPU-SolvingSet family of algorithms

We describe a family of parallel algorithms, based on the
concept of solving set. The algorithms differ by the optimiza-
tion techniques employed to exploit the memory hierarchy and
the architecture of a GPU. GPU-SolvingSet is our basic GPU
algorithm for computing top-n outliers.

1) The GPU-SolvingSet algorithm: The bounded nested
loops in SolvingSet, which compute portions of the distance
matrix pertaining to candidates, offer an opportunity to be
executed by parallel threads in a GPU; however, incremental
computation of nearest neighbors has to be dealt with care.

The main procedure of the algorithm is described in
Figure 3; it runs on the CPU and iteratively calls GPU kernels,
until no more candidates are available. The solving set, the out-
lier min heap and the candidates are stored on and initialized by
the host. In the main while loop, GPUSubtractCand subtracts
candidates from the current set of data points D by moving
substitute points to their locations. Then, current candidates
are added to the solving set. Next, the k nearest neighbors
of candidate points with respect to all data points, and the
k nearest neighbors of data points with respect to candidates
are updated in three steps by the kernels GPUCandNNCand,
GPUDataNNCand, and GPUCandNNData, which are are de-
scribed in Figure 4 and 5.

GPUCandNNCand assigns a thread to each candidate
and iterates over all candidates computing pairwise distances
and inserting them into a max heap of k nearest neighbors.
The procedure updateMin behaves similarly to the analo-
gous procedure used in the sequential algorithms. The kernel
GPUDataNNCand assigns a thread to each data point P and
iterates over each candidate Q. Insertion into the max heap
of P occurs when either the weight upper bound of P or
the weight upper bound of Q is not smaller than the current
minimum outlier weight, passed as parameter minWeight . The
distance between P and Q is also stored in a distance matrix
M by point index; row j of M stores the distances between the

candidate with index j and all data points in D. If the previous
condition is not met, an infinite distance value is stored in the
matrix cell.

GPUCandNNData updates the k nearest neighbors of
candidate points, visiting data points. Processor assignment
and memory allocation are crucial for efficiently executing
this step. A simple approach assigning one thread to each
candidate for computing updates to the nearest neighbors
max heaps would be very inefficient, as the number m of
candidates is small compared to the number of processors. On
the other hand, assigning one thread to each data point, which
iterates through candidates to update their k nearest neighbors,
would generate memory conflicts on the max heaps N of
the candidates, as each thread tries to update the same heap
synchronously. A substantial improvement over the solutions
above consists in assigning a thread block to each row of the
distance matrix, comprising p threads, with p ≤ D .count .
Thread t loops over distance matrix cells indexed M [j, t],
M [j, t + p], M [j, t + 2 · p], . . . , and possibly updates an own
k nearest neighbors max heap nbHeap stored in fast shared
block memory. The update is attempted when the weight
upper bounds satisfy the current outlier weight lower bound
minWeight . At the end of the iteration, in thread block j
each thread heap nbHeap[t] contains the k nearest neighbors
of candidate j in the point set {D [t + k · p] : t + k · p ≤
dataSize, k = 0, 1, . . . }. The heaps are merged by parallel
reduction in log p steps, and finally merged with N [j], which
contained the k nearest neighbors of candidate j in the set of
current candidates, as computed by GPUCandNNCand.

Input: Data set D, a distance function dist(·, ·), integer number n
of outliers, integer number k of nearest neighbors, integer number
m of candidate points.
Output: Solving set of D, set of the top-n outliers of D.

GPUSolvingSet(D , dist , n, k,m) {
SolvSet = ∅;
Top = MinHeap.create(n);
Cand .set(D .RandomSelect(m));
while Cand .count ̸= 0 {

GPUSubtractCand();
SolvSet = SolvSet ∪ Cand .getElements();
GPUCandNNCand(Cand .count);
GPUDataNNCand(Cand .count ,Top.min);
GPUCandNNData(Cand .count ,Top.min,D .count);
for i = 1 to Cand .count

Top.updateMax(D .get(i),D .get(i).nn.sum());
Cand .set(GPUNextCand());

}
return(⟨SolvSet ,Top.getElements()⟩);

Fig. 3. The GPU-SolvingSet algorithm.

The kernel is executed by the threads of candSize + 1
blocks. The threads of the last block, indexed candSize,
execute the second branch, which constructs the min heap
NextCand of the candidates for the next iteration by a similar
technique. Finally, GPUSolvingSet updates the heap of top-n
outliers using current candidates and their weights, and sets
the candidates for the next iteration.

Various GPU-based optimizations could be introduced in
order to improve the strategy, that will be described in the
following.
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GPUCandNNCand(candSize) {
i = Cand [blockDim ∗ blockId + threadId ];
P = D [i];
for j = 1 to candSize {

d = dist(P ,D [Cand [j]]);
updateMin(N [i], d);

}
}

GPUDataNNCand(candSize,minWeight) {
i = blockDim ∗ blockId + threadId ;
P = D [i];
for j′ = 1 to candSize {

j = Cand [j′];
Q = D [j];
if max(N [i].weight ,N [j].weight) ≥ minWeight

then {
M [j, i] = dist(P ,Q);
updateMin(N [i],M [j, i]);

}
else

M [j, i] = ∞;
}

}

Fig. 4. Kernels for updating the nearest neighbors of data points in the set
of candidates in the GPU-SolvingSet algorithm.

2) Variants of GPU-SolvingSet: The distance matrix be-
tween data points and candidates arising in real problems can
be very large, when compared to the size of high-bandwidth
GPU memory. Our first variant, GPU-SolvingSet-NDM, does
not store the entire matrix in device memory. GPU-SolvingSet-
NDM initially employs GPUCandNNCand for computing
inter-candidate distances. Then, for each candidate Q sequen-
tially, in a grid of b blocks of p threads each, every thread: (i)
inserts the distances between Q and |D|/(b ·p) points P; each
distance dist(P ,Q) is inserted both into max heap N [P ] and
into max heap nbHeap[t] in block shared memory, where t is
the thread index in the block; (ii) contributes to hierarchically
merge heaps that are local to the same block in parallel; if
t = 0 saves the resulting heap in device memory, indexed by
candidate and block. In the following grid, heaps indexed by
the same candidate are merged in parallel by a single thread
block in shared memory. Then, in a grid of b′ blocks of p′

threads each, every thread indexed t inserts the weight upper
bound of P computed from N [P ] into a min heap wtHeap[t]
in block shared memory, for |D|/(b′ · p′) points P; it also
contributes to merge heaps in the same block and save them
to device memory as in step (ii) above. Finally, new candidates
are obtained by merging these heaps in parallel.

The second variant, GPU-SolvingSet-NDM-TP, after exe-
cuting GPUCandNNCand, for each candidate Q sequentially
executes step (i) above, in which however nbHeap[t] in stored
in device memory and t is the unique index of the thread in
the grid. Step (ii) above is realized by a separate grid. New
candidates are computed as in GPU-SolvingSet-NDM above.

IV. EXPERIMENTS

In this section, experiments conducted by using the in-
troduced methods are presented. The rest of the section is
organized as follows: Section IV-A describes the experimental

GPUCandNNData(candSize,minWeight , dataSize) {
t = threadId ;
j = blockId ;
p = blockDim;
if j < candSize

then {
nbHeap[t].size = 0;
z = t;
while z < dataSize {

if max(N [z].weight ,N [j].weight)
≥ minWeight

updateMin(nbHeap[t],M [j, z]);
z = z + p;

}
//Parallel reduction
maxHeapMerge(N [j], nbHeap, t);

} else {
wtHeap[t].size = 0;
z = t;
P = D [z];
while z < dataSize {

if P .isActive
then

if (N [P ].weight ≥ minWeight)
then

updateMax(wtHeap[t],
⟨P ,N [z].weight⟩);

else P .isActive = false;
z = z + p;

}
//Parallel reduction
NextCand = minHeapMerge(wtHeap, t);

}
}

Fig. 5. Kernels for updating the nearest neighbors of candidates in the set
of data points in the GPU-SolvingSet algorithm.

setting and the datasets employed; Section IV-B presents the
comparison of GPU-SolvingSet with SolvingSet and Brute-
Force-based strategies; finally, Section IV-C discusses the
performances of GPU-SolvingSet variants here introduced.

A. Experimental setting and datasets

We ran the CPU/GPU codes by employing an Intel Xeon
processor running at 2.40 GHz and hosting an Nvidia Tesla
M2070 GPU with 448 cores at 1.15 GHz and 6 GB of global
memory.

The single precision floating point operations have been
employed corresponding to a peak performance on the GPU
of 1.03 Teraflops. The CPU code is run on a single CPU core
and makes use only of scalar single precision floating point
operations. The algorithm codes are written in Java and the
NVIDIA CUDA Toolkit 4.1 is used for the GPU.

As for the CUDA parameters, we point out that each
experiment has been preceded by the execution of a tuning
phase aimed to guarantee an optimal configuration for the run
at hand. This step has carried by a code module providing the
values to be assigned to the CUDA parameters used by the
algorithms. In particular this module, which is the same for
all the algorithms, works by taking into account the hardware
specifications, the algorithm to be used and the settings of the
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Fig. 6. Speedup over CPU-BF on G2d for various values of k.

running experiment, which are depending on the dataset to be
mined and on the parameters for detection task. We omit the
details of this module, but we can summarize that it computes
the values for the CUDA parameters allowing an optimal
matching between the GPU device at hand and the experiment,
in order to optimize the performance of the algorithm on the
specific data set. We note that the computational cost for the
tuning module is negligible.

In the experiments, we considered the following datasets:
G3d is synthetic and contains 500,000 3D real vectors, ob-
tained by the union of the objects of three 3-d normal distri-
butions having different mean vectors and the unit matrix as
covariance matrix; Covtype includes the quantitative attributes
of the real data set Covertype, available at the Machine
Learning Repository of UCI [22], and consists of 581,012
instances of 10 attributes; G2d is a synthetic collection of
1,000,000 vectors generated from a 2-d normal distribution
having the origin as mean vector and the unit matrix as
covariance matrix; Poker is obtained from the real data set
PokerHands, available at UCI repository, by removing the
class label and consists of 1,000,000 instances of 10 attributes;
2Mass contains data from the NASA/IPAC Infrared Science
Archive2 (IRSA) and is composed of 1,623,376 instances,
consisting of three quantitative attributes associated with JHK
filters, obtained from the database 2MASS Survey Atlas Image
Info of the 2MASS Survey Scan Working Databases catalog.

In the sequel, if not otherwise stated, the values for the
detection task parameters, are n = 10, k = 50, and m = 100.
We considered also other combinations of values for the above
parameters, but the results are not completely reported in the
paper, since the behavior of the algorithms does not change
significantly.

For the sake of brevity, in the rest of the section the ex-
perimented algorithms will be abbreviated by their acronyms,
as detailed next: BruteForce as CPU-BF, GPU-BruteForce
as GPU-BF, GPU-BruteForce-SH as GPU-BF-SH, SolvingSet
as CPU-SS, GPU-SolvingSet as GPU-SS, GPU-SolvingSet-
NDM as GPU-SS-NDM, and GPU-SolvingSet-NDM-TP as
GPU-SS-NDM-TP.

2See http://irsa.ipac.caltech.edu/.

B. Comparison of GPU-SS with CPU-SS and BruteForce-
based strategies

In this section, the CPU-BF, CPU-SS, GPU-BF,
GPU-BF-SH, and GPU-SS algorithms are compared.

In the first experiment the G2d dataset has been employed.
In particular, the parameter k has been fixed to 5, the dataset
size has been varied between 100K and 500K by sampling, and
the execution time has been measured. Figure 6(a) reports the
speedup of the methods with respect to the CPU-BF algorithm
for k = 5. From the figure, it appears that the trend of the
speedup is approximatively monotonically non-decreasing with
the dataset size for all the the methods tested.

As for the various methods considered, the GPU-BF ex-
hibits a great speedup, amounting to two orders of magnitude.
For the larger dataset instance here considered, the speedup
of GPU-BF approaches 400, a very satisfactory result. This
behavior witnesses that the GPU-BF algorithm here proposed
is able to fully exploit the GPU features. As far as the
GPU-BF-SH method, the exhibited speedup is also good (two
orders of magnitude), though lower than that of GPU-BF.

The CPU-SS method has a considerable speedup with
respect to the CPU-BF one. Clearly, this is expected since
the CPU-SS is like an optimized version of the CPU-BF.
However, the curves show that CPU-SS outperforms even the
GPU-BF and GPU-BF-SH algorithms. As a matter of fact, the
CPU-SS technique, already introduced in the literature in [20],
is able to vastly reduce the number of distance computations
so that it outperforms even optimal parallelized versions of the
CPU-BF algorithm.

As far as GPU-SS is concerned, the experiment confirms
that the strategy here employed to parallelize on the GPU is
able to achieve time savings with respect to both the CPU-SS
and the GPU/CPU-based versions of the brute force approach.
We will elaborate on the relative speedups later in the section.

Figures 6(b) and 6(c) show the speedup of the methods
for k = 10 and k = 50. In general, the behavior above
described is maintained, the only difference concerns the
GPU-BF and GPU-BF-SH methods for k = 50. In this case,
the best speedup of GPU-BF-SH doubles, while the speedup
GPU-BF gets smaller, though the order of magnitude of the
speedup remains the same. However, it must be noticed that
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Fig. 7. Speedup over CPU-SS for various values of k.

on the whole dataset GPU-BF comes back to outperform
GPU-BF-SH (this datum is showed later in this section).

In general, it can be observed that the speedup of the GPU
versions of the CPU-BF worsens when k gets larger. For k =
50, that is the largest value of k here considered, the speedup
of GPU-BF-SH gets better of that of GPU-BF. Thus, it can
be concluded that GPU-BF is most sensitive to the value of
the parameter k.

In order to validate the above analysis, the execution times
of GPU-SS, CPU-SS, GPU-BF, GPU-BF-SH, and CPU-BF
has been measured on the datasets G3d, Covtype, Poker, G2d,
and 2Mass. Figures 7(a)-7(c) report the speedup of the various
methods w.r.t. the CPU-SS algorithm for k ∈ {5, 10, 50}. The
results of the CPU-BF algorithm are not reported, since its
execution time exceeded in any case the 24 hours (this was the
maximum computation time allowed for a process allocated on
the machine employed for the experimentation).

The figures highlight that CPU-SS outperforms GPU-BF
and GPU-BF-SH on all the datasets except for Covtype. In
order to understand this behavior, the fraction

#distances computed by CPU-SS

#pairwise distances

has been measured. The results are reported in table be-
low. Clearly, Covtype is the most demanding dataset for the
CPU-SS method, as in this case the relative number of dis-
tances computed corresponds about to the 5% of the worst case
number, that is the total number of pairwise distances among
dataset objects and also the number of distances in charge of
the brute force methods. Notice that in the GPU-based versions
of the brute force method these distances are subdivided among
all the GPU cores. Hence, for a GPU having 448 cores, the
relative number of distances computed by each core amounts
to 0.22%. By comparing this load with the values reported in
the following table, it can be recognized a relationship between
the distance computation savings obtained by CPU-SS and the
speedup of GPU-BF and GPU-BF-SH w.r.t. CPU-SS.

k = 5 k = 10 k = 50
G2d 0.13% 0.11% 0.15%
G3d 0.34% 0.40% 0.64%
Covtype 5.05% 4.07% 6.83%
2Mass 0.67% 0.42% 0.04%
Poker 2.49% 1.59% 1.84%

Summarizing, in these experiments the speedup the
GPU-SS may achieve over CPU-BF is enormous: up to four
orders of magnitude. The CPU-SS method has a speedup
over GPU-BF and GPU-BF-SH of one order of magnitude.
Differently, the speedup of GPU-BF and GPU-BF-SH over
CPU-BF is larger: two orders of magnitude, which is of the
same order of the CUDA cores available on the GPU. However,
as for the comparison of GPU-SS to CPU-SS the speedup
is reduced (one order of magnitude: up to 45 times). This
confirms that the brute force approach can exploit parallel
architectures more efficiently than the solving set algorithm,
as already discussed in the previous sections.

However, there is still room for improvements as accounted
for in the next section, where more clever GPU parallelization
schemes that can ameliorate in specific scenarios the speedup
of the basic GPU-SS strategy are experimented.

C. Comparison of the GPU-SS variants

In this section, the following algorithms are taken
into account: CPU-SS, GPU-SS, GPU-SS-NDM, and
GPU-SS-NDM-TP.

Figure 8(a) reports the relative performance of the methods
w.r.t. CPU-SS for k ∈ {5, 10, 50} on all the datasets previ-
ously considered. As for GPU-SS-NDM, it can be seen that
for small values of the parameter k the strategy guarantees
improvements over GPU-SS, while for large k values it per-
forms worse. As for GPU-SS-NDM-TP, from the experiment
this strategy does not seem to offer particular advantages
neither over GPU-SS-NDM nor over GPU-SS. Hence, it can
be concluded that the reduced shared memory occupancy of
this method is counterbalanced by the major cost to be paid
on the additional operations involving the global memory.

The following table reports the performance increment of
the GPU-SS variants w.r.t. the GPU-SS basic method.

GPU-SS-NDM GPU-SS-NDM-TP
k = 5 k = 10 k = 50 k = 5 k = 10 k = 50

G2d +34.2 +15.5 −50.5 −5.1 −28.9 −53.4
G3d +23.2 +11.2 −41.6 −16.6 −31.8 −34.2
Covtype +59.4 +67.0 −8.9 +0.6 +3.9 +3.8
2Mass +28.3 +4.6 −41.0 −12.5 −35.6 −43.3
Poker +55.9 +89.5 −8.4 −2.9 +13.2 −3.9

As already pointed out, for k < 10, GPU-SS-NDM may
achieve sensible time improvements (up to 67%). For k = 50,
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Fig. 8. Speedup over CPU-SS for various values of k.

the role of GPU-SS and GPU-SS-NDM is exchanged, since the
former method improves over the latter (up to 50%). Thus, this
experiment makes clear what are the scenarios most suitable
for the two kind of strategies and what are the improvements
that can be obtained by each of them.

Naturally, the GPU-SS-NDM has a spatial cost lower than
that of GPU-SS and could become the only applicable GPU-
SolvingSet-based strategy on very large dataset.

V. CONCLUSIONS

Due to the complexity of state-of-the-art algorithms for
distance-based outlier detection, such algorithms may be im-
practical in on-line applications requiring very short response
times, or applications handling very large data sets. The
GPU algorithms presented in this work realize parallel, SIMT
CUDA versions of the SolvingSet algorithm which outperform
our implementation of an optimized CPU algorithm by a
factor of at least 15, up to a factor of 60. The experiments
we have conducted include both real and synthetic large
data sets, and show a remarkable consistency of performance
across data set sizes. We experimented several combinations
of implementation choices, considering the proposals in the
literature and introducing new variations witch differ in the
usage of the GPU memory hierarchy and in the way the
computation is distributed among the threads and the GPU
cores. The experiments show that the approach is very promis-
ing, and the research will continue for a deep comprehension
of the influence of the various implementation choices on
computational properties and on performances.
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