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Abstract. Determining a good sets of pivots is a challenging task for
metric space indexing. Several techniques to select pivots from the data
to be indexed have been introduced in the literature. In this paper, we
propose a pivot placement strategy which exploits the natural data ori-
entation in order to select space points which achieve a good alignment
with the whole data to be indexed. Comparison with existing methods
substantiates the effectiveness of the approach.

1 Introduction

The similarity search in metric spaces [7, 12, 14] is a fundamental task in a huge
set of fields. In particular, range queries, which are of interest here, take as input
the query object q and a radius R, and return all the objects of the dataset lying
within distance R from q.

One of the main techniques for indexing objects from a metric space, is the
pivoting based one [13, 10, 6, 7, 14, 2]. In such approaches, the idea is to select a
certain number of objects, called pivots. Due to the reverse triangle inequality,
given two generic objects x and y, their distance cannot be smaller than the dis-
tance between x and p minus the distance between y and p, for any other object
p. Hence, in order to answer to a range query, this lower bound can be exploited
to discard those objects which do not lie within distance R from the query object
q, namely whose lower bound is greater than R. By sketchily summarizing, at
indexing time all the pairwise distances among the objects of the dataset and
the pivots are stored in the index. At query time, first of all, the distances be-
tween the query object q and all the pivots are computed. Then, a candidate

selection phase follows, which is accomplished by selecting those objects which
are not discarded by exploiting the lower bounds computed through the pivots.
The true neighbors of q are eventually retrieved by a filtering phase consisting
in computing the actual distances among q and each candidate object.

In the best case, the objects returned by the candidate selection phase co-
incide with the query answer. However, minimizing the number of the spurious
objects is a hard challenge. Usually, the greater the number of pivots, the smaller
the number of spurious objects in the candidate set. By keeping fixed the num-
ber of pivots, it is known that a clever selection of pivots can drastically improve
index performances. Given a dataset and an integer k, the pivot selection prob-

lem accounts for selecting a good set of k objects to be employed as pivots [1].
Normally, pivots are selected among the set of objects to be indexed. In some



scenarios this may be the unique option, since it can be difficult to figure what
a reasonable object out of those actually belonging to the data at hand can be.
This is precisely the assumption made by all pivot selection techniques so far
introduced in the literature [4, 11, 5].

Authors of [4] propose three different techniques, detailed in the following.
According to the Selection of N Random Groups strategy, N groups each con-
sisting in k pivots are randomly chosen from the dataset. For each group, the
quality of the set of pivots is measured and the group scoring the maximum
value of quality is returned. As for the Incremental Selection strategy, the idea
is to randomly select N objects from the dataset. Then, the object (among the
N selected ones) that alone scores the maximum value of quality is chosen as the
first pivot p1. The second pivot is the object p2 such that maximizes the quality
of the set of pivots {p1, p2} and so on until k pivots are chosen. Finally, the Local
Optimum Selection strategy consists in selecting an initial set of k pivots and
a set of A pairs of objects. For N ′ times a so-called victim in the set of pivots
is singled out and replaced by a better pivots chosen in a sample of X dataset
objects. In order to individuate the victim, it is built a A× k matrix M , where
M(i, j) is the distance between the objects of the ith pair computed through the
pivot pj . For each row, the maximum (dM) and the second maximum (dM2) val-
ues are computed. The contribution of each pivot pj is computed as the sum over
the A pairs of the difference between dM and dM2, if dM is achieved in the column
j and 0 otherwise. The victim is the pivot scoring the lowest contribution.

In [11] the Sparse Spatial Selection technique is proposed. The approach is
based on the idea that if the pivots are well-distributed in the metric space
they are able to discard more objects. The set of pivots is initially a singleton
consisting in the first dataset object. Then, for each dataset object, this is chosen
as a new pivot if and only if its distance from any pivot currently in the set is
greater than Mα where M is the maximum distance between any pair of dataset
objects and α is a parameter whose empirically proven good value is 0.4. Such
a method has next been extended in [5] where not only new pivots are added to
the current set, but it is also checked if some pivot has become redundant and,
in such a case, it is replaced by a better one. This latter task is accomplished
by a estimating the contribution of an object in a fashion similar to the Local

Optimum Selection approach.

As a main contribution, in this work we take a different perspective by con-
sidering the whole object domain in order to single out pivots, that is pivots can
be objects that do not belong to the current dataset. We call this instance of the
problem as pivot placement problem. Specifically, we consider here as reasonable
scenario the case in which the object domain coincides with the d-dimensional
Euclidean space R

d. We describe a technique singling out the most promising
directions which pivots should lie on. To the best of our knowledge this is the
first work considering the pivot placement problem.

The remainder of the paper is organized as follows. Section 2 describes the
pivot placement technique. Section 3 compares the approach here introduced
with competitors. Finally, Section 4 draws the conclusions.



Algorithm 1: PPP(D, k)

Input: D, set of objects; k, number of required
pivots

1: n = |D|
// Compute small clusters

2: K = K0 // number of small clusters
3: C = GetSmallClusters(D,K)

// Compute intra-cluster directions

4: N = K(K+1)
2

// number of directions
5: for i = 1 to K do

6: vi = PCA(Ci)

7: wi =
|Ci|(|Ci|−1)

n(n−1)

8: ci =
1

|Ci|

∑
x∈Ci

x

// Compute inter-cluster directions
9: l = K + 1
10: for i = 1 to K − 1 do

11: for j = i+ 1 to K do

12: wl =
|Ci|(|Cj |−1)

n(n−1)/2

13: vl =
ci−cj

‖ci−cj‖

14: l = l + 1

// Compute angles between directions
15: for i = 1 to N-1 do

16: for j = i to N do

17: αi,j = arccos(|〈vi,vj〉|)
18: αj,i = αi,j

// Perform prioritized fixed-width clustering
19: θ = θ0 // cone angle
20: 〈ℓ, c〉 = PFWC(α, w, θ)

// Determine the best pivots

21: M =
1

n

n∑

i=1

xi

22: L =
n

max
i=1

‖xi −M‖

23: T = T0 // pivot displacement
24: for i = 1 to min{c, k} do

25: Ji = {j : ℓj = i}

26: pi = M − T · L ·

∑
j∈Ji

wjvj∑
j∈Ji

wj

27: return p

Algorithm 2: PFWC(α, w, θ)

Input: α, pairwise angles; w, direction weights;
θ, angle threshold

Output: ℓ, labels (cluster numbers) assigned to
directions; c, number of obtained
clusters

1: for i = 1 to N do

2: for j = 1 to N do

3: βi,j = 0

4: if αi,j ≤
θ
2
then

5: βi,j = 1

6: m = N

7: c = 0
8: while m > 0 do

9: c = c+ 1
10: ̺ = β · w
11: i = argmaxi ̺i
12: for j = 1 to N do

13: if βi,j = 1 then

14: m = m− 1
15: ℓj = c

16: βj,· = 0
17: β·,j = 0

18: return 〈ℓ, c〉

2 Principal Directions-Based Pivot Placement Algorithm

In this section, the PPP (for Principal directions-based Pivot Placement) algo-
rithm is presented. The pseudo-code of the algorithm is reported in figure. It
receives in input the dataset D and the number k of required pivots.

First, data is partitioned into a numberK of homogeneous clusters C1, . . . , CK ,
also called small clusters in the sequel. With this aim, the K-means algorithm is
employed, that outputs a controlled number of prototypes having the property
of minimizing the average distance to the associated groups. The small clusters
are then exploited to determine directions connecting the data objects. A set

v1, . . . ,vN of N = K(K+1)
2 directions, that are versors associated with either a

single small cluster (1 ≤ i ≤ K) or a pair of small clusters (K < i ≤ N), is



populated. Each direction has also a weight wi which represents the significance
of the direction.

Directions vi associated with single small clusters intend to capture the main
direction along which the cluster objects spread. This direction is naturally cap-
tured by the first principal component of the cluster which is computed by ex-
ploiting Principal Component Analysis (PCA). PCA is [9] an orthogonal linear
transformation to a new coordinate system such that the greatest variance by
any projection of the data comes to lie on the first coordinate (called the first
principal component). The weight wi of the direction vi consists in the number
of pairwise objects of the cluster. As for the directions vl (K < l ≤ N) asso-
ciated with pairs Ci and Cj of different small clusters, they are defined in the
terms of the vector linking the center of mass ci of Ci and cj of Cj , and the
associated weight is given by the number of distinct pairs consisting of objects
coming from the two clusters. Once intra-cluster and inter-cluster directions have
been obtained, together with their importance, the matrix α of pairwise angles
αi,j (1 ≤ i, j ≤ N) formed by the directions vi and vj is computed, where
αi,j = arccos(|〈vi,vj〉|), in order to be exploited to determine directions along
which pivots will be placed.

With this aim directions are grouped according to a prioritized fixed width

clustering strategy (see algorithm PFWC in figure). Specifically, at each main
iteration of PFWC, a seed direction vi is selected and all the directions vj (not
already assigned to a group) such that αi,j ≤ θ/2 are assigned to the same
group. These are the directions lying in the double cone having apex in the
origin and axis collinear to vi and forming an angle between surface and axis of
θ/2 radians. Seed directions are selected by assigning a priority ̺i (1 ≤ i ≤ N)
to those not already grouped and, then, by selecting the direction scoring the
maximum priority. Priorities are computed as ̺ = β · w, that is to say ̺i is the
sum of the weights associated with the directions that will become part of the
group obtained by using direction vi as seed.

Let M and L be the center of mass and the radius, respectively, of the
dataset D. Moreover, let T a positive number, also called displacement, which is
used to locate the hyper-sphere S of radius T · L centered in M . The c groups
of directions returned by PFWC are finally exploited in order to place pivots.
Pivot pi (1 ≤ i ≤ k) is obtained from the i-th group of directions, that are the
directions vj such that ℓj = i. Specifically, pi corresponds to one of the two
points located at the intersection of the surface of the sphere S and the straight
line passing through M whose direction is given by the mean of the versors in
the i-th group.

3 Experiments

We used some collections of data available in the Metric Spaces Library [8] and
in the UCI KDD Repository [3]: COLOR (112,682 points with 112 features),
LANDSAT (275,465 points with 60 features), and NASA (40,150 points with 20
features). The PPP method has been compared with the Selection of Random
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Fig. 1: Experimental results.

Groups (RAND), Incremental Selection (INCR), Local Optimum Selection (LO-
CAL), and Sparse Spatial Selection (SSS) strategies. The parameters of PPP
employed are the following: number of small clusters K0 = 100, cone angle
θ0 = π/3, and pivot displacement T0 = 10. As for the parameters of the com-
petitors, we set them to the values suggested in [4]. Specifically, for RAND the
number of sets of pivots is N = 50; for INCR the size of the sample is N = 50;
for LOCAL the number of pairs A is set to 100,000, the number of iterations N ′

is set to k and the size of the sample is X = N − 1; finally, for SSS α has been
set so that the number of selected pivots were close to k.

We performed a number of range query searches. Specifically, for each dataset,
we considered three different radiuses. Radius values are such that on average
the 0.01%, 0.05% and 0.1% of the dataset objects are selected. As for the queries,
5,000 objects have been picked out at random from the dataset. Experimental
results are reported in Figure 1. We varied the number of pivots up to about
the number of dimensions (reported on the x-axis) and compared the number of
distances computed during both the candidate selection and the filtering phase,
reported on the y-axis. Figures highlight that PPP performs better than com-



petitors on the COLOR and LANDSAT datasets, and comparably to the other
methods (INCR and LOCAL) on the NASA dataset. Experiments are encour-
aging, since they confirm that PPP may exhibit state-of-the-art performances
as a method for pivot selection.

4 Conclusions

We addressed the pivot placement problem and provided a suitable algorithm
to deal with it. Experiments confirmed that the proposed method, based on the
idea of placing the pivots in the space by determining directions which achieve
the better alignment with the whole dataset, improves indexing effectiveness.
As for the future work, we are going to preform a more extensive experimental
campaign, including further datasets and a comprehensive parameter sensitivity
analysis. Also, theoretical assessment of the proposed strategy and extending it
to general metric spaces is of interest.
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