
On the Complexity of Inducing Categorical and Quantitative

Association Rules

Fabrizio Angiulli

ICAR-CNR

c/o DEIS, Universit̀a della Calabria,

Via Pietro Bucci, 41C

87036 Rende (CS), Italy

E-mail: angiulli@icar.cnr.it

Phone: +39 0984 831738

Fax: +39 0984 839054

Giovambattista Ianni

Dip. di Matematica, Università della Calabria,
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Abstract

Inducing association rules is one of the central tasks in data mining applications. Quantitative association rules induced

from databases describe rich and hidden relationships to be found within data that can prove useful for various application

purposes (e.g., market basket analysis, customer profiling, and others). Although association rules are quite widely used

in practice, a thorough analysis of the related computational complexity is missing. This paper intends to provide a

contribution in this setting. To this end, we first formally define quantitative association rule mining problems, which

include boolean association rules as a special case; we then analyze computational complexity of such problems. The

general problem as well as some interesting special cases are considered.
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1 Introduction

The enormous growth of information available in database systems has led to a significant development of techniques

for knowledge discovery in databases. At the heart of the knowledge discovery process is the application of data mining

algorithms that are in charge of extracting hidden relationships among pieces of information stored in a given database

[11]. The most widely used data mining techniques include classification algorithms, cluster analysis and association rule

induction [2]. In this paper, we focus on this last data mining technique. Informally speaking, an association rule states

that, in the database at hand, a conjunction of conditions implies a consequence. For instance, the rulehamburger, fries

⇒ soft−drink induced from a purchase database, tells that a customer purchasing a hamburger and fries also purchases

a soft-drink. An association rule induced from a database is interesting if it describes a relationship that is “valid” as

far as the information stored in the database is concerned. To state such a validity,indicesare used, that is, functions

with values usually in[0, 1]. An index tells to what extent an extracted association rule describes knowledge valid in the

database at hand. For instance, aconfidencevalue of 0.7, associated to the rule above, tells that 70 percent of purchases

including hamburgers and fries also include a soft-drink. In the literature, several indices have been proposed (see e.g.

[7], where several quality criteria are proposed). Clear enough, information patterns expressed in the form of association

rules and associated indices indeed represent knowledge that might be useful in several application areas, such as, market

basket analysis and fraud detection, just to mention a few. In some application areas, however,booleanassociation

rules, like the one above, are not expressive enough for the purposes of the given knowledge discovery task. In order

to obtain more expressive association rules, one can allow more general forms of conditions to occur therein. Given a

categorical attributeA (an attribute having a discrete, unordered domain associated), anumericattributeA′ (an attribute

associated with an ordered domain of numbers), a categorical domain valueu, and two numeric valuesl′ andu′ (l′ ≤ u′),

quantitative association rules[23] are such that both the premise and the consequence use conditions of the following

forms: (i) A = u; (ii) A 6= u; (iii) A′ ∈ [l′, u′]; (iv) A′ /∈ [l′, u′]. For instance, the quantitative rule

(hamburger∈ [2, 4]), (ice-cream-taste= chocolate) ⇒ (soft-drink∈ [1, 3])

induced from a purchase database, specifies a pattern telling that a customer purchasing from 2 to 4 hamburgers and

a chocolate ice-cream also purchases from 1 to 3 soft-drinks. In either forms, inducing association rules is a quite

widely used data mining technique, several systems have been developed based from them [3, 18], and several successful

applications in various contexts have been described [9]. Despite the wide spread utilization of association rule induction

in practical applications, a thorough analysis of the complexity of the associated computational tasks has not been yet

developed. However, such analysis appears to be important since, as in other contexts, an appropriate understanding

of the computational characteristics of the problem at hand makes it possible to single out tractable cases of generally

untractable problems, isolate hard complexity sources and, overall, to devise more effective approaches to algorithm

development.

We define a form of association rules that generalizes over the quantitative, categorical and the boolean attributes.

We allow the null values (in the following indicated byε) to occur in the database denoting the absence of information.

When we induce association rules from databases with nulls, it is forbidden to specify conditions on null values. A
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boolean association rule can be thus regarded as a special case of quantitative or categorical association rule mined on

a database with nulls. Indeed, according to the definitions in [2], given a set of itemsI, a transactiont on I is a subset

of I, a boolean databaseT on I is a set of transactions onI, and a boolean association rule onI is an expression of

the formX ⇒ Y , whereX andY are disjoint subsets ofI. We capture this formal framework by callingboolean

a database defined on a set of attributes taking value over{c, ε}, wherec is an arbitrary constant. In this setting, an

association rule(B1 = c) ∧ . . . ∧ (Bp = c) ⇒ (H1 = c) ∧ . . . ∧ (Hq = c) will encode the boolean association rule

B1, . . . , Bp ⇒ H1, . . . , Hq. According to the formalization introduced in the following section, this is the only kind of

rule allowed on boolean databases, since conditions onε values are forbidden (and a condition likeA 6= c is equivalent

to A = ε). We analyze the computational complexity of inducing association rules by the most frequently used rule

quality indices, namely, confidence, support,θ-gain andh-laplace [7, 2]. Specifically, we shall show that, depending

on the chosen index of reference, the complexity of the problem is either in P or NP-complete. When databases with

nulls are considered, independently of the reference index, the rule induction task is NP-complete. However, we show

that there are cases where the association rule problem is very easy to solve. To permit a better understanding of the

new complexity results introduced in this work, we describe them in Section 3, after giving the preliminary definitions

that will be used throughout the paper, in Section 2. The rest of this paper is organized as follows. In the next section

preliminary definitions are given. In Section 3 related works and details of the new complexity results introduced in this

work are described. In Section 4 general complexity results about inducing association rules are stated. Sparse databases

and Fixed-schema complexity of rule induction are dealt with in Sections 5 and 6, respectively. Finally, in Section 7

further complexity results about some interesting special cases are collected.

2 Preliminaries

We begin by defining several concepts that will be used throughout the paper, including, among others, those of association

rule induction problems and indices.

Definition 2.1 (Domain) A domainis a finite or countable set of values augmented with the special valueε, callednull

value. A categorical domain(respectively,numerical domain) is one whose values are unordered (respectively, totally

ordered with respect to an order relation≤).

Definition 2.2 (Attribute) An attributeA is an identifier with an associated domaindom(A). If dom(A) is a categorical

(respectively, numeric) domain, then we say thatA is a categorical(respectively,numeric) attribute. We say thatA is

booleanif dom(A) = {ε, c(A)}, wherec(A) denotes an arbitrary fixed constant associated toA.

Definition 2.3 (Tuple) Let I = A1, . . . , Am be a set of attributes. Atuple t on I is am-ple (v1, . . . , vm), wherevi ∈
dom(Ai), for i = 1, . . . ,m. Thevalue of the attributeAi in t, denoted byt[Ai], is vi, for i = 1, . . . ,m. Thesize|t| of

t ∈ T is |{A ∈ I | t[A] 6= ε}|.

Definition 2.4 (Database)Let I be a set of attributes. AdatabaseT on I is a collection of tuples onI. We say thatT is

adatabase without nullsif, for eacht ∈ T , |t| = |I|. Otherwise we say thatT is adatabase with nulls.
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Name Year Mathematics Computer Physics

Science

John 2001 A B ε

Anastasia 2001 ε ε ε

Lawrence 2001 A ε ε

Gabriel 2001 B A A

John 2002 A B E

Anastasia 2002 A C ε

Lawrence 2002 A A A

Gabriel 2002 B A A

Figure 1: The example databaseDB1.

Definition 2.5 (Boolean database and sparse family of boolean databases)Let I be a set of attributes, and letT be a

database onI. We say thatT is aboolean databaseif every attributeA ∈ I is boolean. Given a databaseT defined on

a set of attributesI, by mT we denote the tuple ofT having the largest size. A familyS of boolean databases issparse

if, for any T ∈ S, |mT | isO(log |I|) whereI is the set of attributes whichT is defined upon. Given a familyS of sparse

databases, we will callsparse databaseeach elementT ∈ S.

Definition 2.6 (Active domain of an attribute) Let I be a set of attributes, letA be an attribute inI, and letT be a

database onI. Theactive domain ofA in T , denoted bydom(A, T ), is the set{t[A] | t ∈ T} − {ε}.

Thus, given an attributeA and a databaseT , with dom(A, T ) we denote the set of the values assumed by the attributeA

in the tuples ofT (null value excluded), while bydom(A) we denote the set of all the possible values thatA can assume

in any database (null value included). For example, ifdom(A) isN∪{ε}, whereN denotes the set of the integer numbers,

thendom(A, T ) is always a subset ofN of size at most|T |.

Definition 2.7 (Atomic condition) Let A be an attribute. Anatomic conditiononA is:

• an expression of the formA = u or A 6= u, whereA is a categorical attribute andu ∈ (dom(A)− {ε}) is a value

in the domain ofA distinct from theε value, or

• an expression of the formA ∈ [l, u] or A /∈ [l, u], whereA is a numeric attribute,l, u ∈ (dom(A) − {ε}) and

l ≤ u.

Whenever numerical attributes are involved, the notationA = u (respectivelyA 6= u) can be used and is regarded as a

syntactic shortcut forA ∈ [u, u] (respectivelyA /∈ [u, u]).

Definition 2.8 (Active domain of an atomic condition) Given a set of attributesI, an attributeA in I, an atomic condi-

tion CA onA, and a databaseT on I, theactive domain ofCA in T , denoted bydom(CA, T ), is:
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Mathematics Computer Physics Geography

Science

Yes Yes ε Yes

ε ε ε Yes

Yes ε ε Yes

Yes Yes Yes Yes

Yes Yes Yes Yes

Yes Yes ε ε

Yes Yes Yes ε

Yes Yes Yes Yes

Figure 2: The example databaseDB2.

I1 I2 I3 . . . Ik−2 Ik−1 Ik Ik+1 . . . In−3 In−2 In−1 In

t1 ε ε ε . . . ε ε 1 ε . . . ε ε ε ε

t2 1 ε ε . . . ε ε ε ε . . . ε 1 ε ε

t3 ε 1 ε . . . ε ε ε ε . . . ε 1 ε ε

· · ·

tn−1 ε ε 1 . . . ε ε ε ε . . . ε ε ε 1

tn ε ε ε . . . ε 1 ε ε . . . ε ε ε 1

Figure 3: An example of sparse database

• for CA ≡ (A = u), the setdom(A, T ) ∩ {u};

• for CA ≡ (A 6= u), the setdom(A, T )− {u};

• for CA ≡ (A ∈ [l, u]), the setdom(A, T ) ∩ {x ∈ dom(A) | l ≤ x ≤ u};

• for CA ≡ (A /∈ [l, u]), the setdom(A, T )− {x ∈ dom(A) | l ≤ x ≤ u}.

Definition 2.9 (Condition) A conditionC on a set of distinct attributesA1, . . . , An is an expression of the formC =

C1 ∧ . . . ∧ Cn, where eachCi is an atomic condition onAi, for eachi = 1, . . . , n. We denote byatt(C) the set

A1, . . . , An. Thesize|C| of C is n.

Definition 2.10 (Satisfaction of a condition)Let I be a set of attributes, letT be a database onI, and lett be a tuple of

T . Let A be an attribute inI, and letCA be an atomic condition onA. Then, we say thatt satisfiesCA, written t ` CA,

iff t[A] ∈ dom(CA, T ). Let C = C1 ∧ . . . ∧ Cn be a condition on a subset ofI, we say thatt satisfiesC, written t ` C,
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UserID Carrier PlcdCalls RcvdCalls SpntMoney

K Omnitel 80 40 $23.33

K Tim 10 5 $4.30

A Omnitel 110 81 $30.04

L Wind 90 20 $51.51

V Wind 95 112 $70.70

V Omnitel 1 0 $.05

G Wind 50 2 $25.50

G Omnitel 5 30 $1.25

Figure 4: The example databaseDB3

iff t ` Ci, for eachi = 1, . . . , n. Otherwise we say thatt does not satisfyC, written t 6` C. By TC we denote the set of

tuples{t ∈ T | t ` C}.

We are now able to define association rules and their semantics.

Definition 2.11 (Association rule) Let I be a set of attributes. Anassociation ruleon I is an expression of the form

B ⇒ H, whereB andH, calledbodyandheadof the rule respectively, are two conditions on the sets of attributesIB

andIH respectively, such that∅ ⊂ IB , IH ⊂ I, andIB ∩ IH = ∅. Thesize|B ⇒ H| of the rule is|B|+ |H|.

Definition 2.12 (Trivial condition and trivial association rule) Let I be a set of attributes, and letT be a database on

I, and letC be a condition on a subset ofI. We say thatC is trivial if it contains at least one atomic conditionCA such

thatTCA = T . Let B ⇒ H be an association rule onI. We say thatB ⇒ H is trivial if B ∧H is trivial.

Following are examples of rules in the databaseDB3 shown in Figure 4:

Carrier = Omnitel =⇒ RcvdCalls ∈ [50, 100], (1)

RcvdCalls ∈ [0, 50] ∧PlcdCalls ∈ [0, 50] =⇒ Carrier = Wind, (2)

PlcdCalls ∈ [50, 80] =⇒ SpntMoney ∈ [$50, $100], (3)

SpntMoney ∈ [$0, $100] =⇒ Carrier = Omnitel. (4)

Note that rule 4 is trivial. A database allowing nulls is shown in Figure 1 (DB1), whereas Figure 2 describes a boolean

database (DB2). Examples of allowed rules onDB2 are:

Mathematics = Y es =⇒ Physics = Y es ∧Computerscience = Y es, (5)

Geography = Y es =⇒ Physics = Y es. (6)

When inducing association rules from databases in data mining applications, one is usually interested in obtaining rules

that describe knowledge “largely” valid in the given database. This idea is captured by several notions ofindices, which
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have been defined in the literature. In the following, we shall consider the most widely used indices, whose definitions

are given next.

Definition 2.13 (Indices) Let I be a set of attributes, letT be a database onI, and letB ⇒ H be an association rule on

I. Then:

1. thesupportof B ⇒ H in T , writtensup(B ⇒ H, T ), is |TB∧H |
|T | ;

2. theconfidenceof B ⇒ H in T , writtencnf(B ⇒ H, T ), is |TB∧H |
|TB | ;

3. Let θ be a rational number,0 < θ ≤ 1, then theθ-gain of B ⇒ H in T , written gainθ(B ⇒ H, T ), is
|TB∧H |−θ·|TB |

|T | ;

4. Let h be a natural number,h ≥ 2. Then theh-laplaceof B ⇒ H in T , written laplaceh(B ⇒ H, T ), is |TB∧H |+1
|TB |+h .

Let C be a condition onI. By analogy with the above definition, we define thesupportof C in T , writtensup(C, T ), as
|TC |
|T | .

Support and confidence are classical indices employed in the data mining field to establish rules’ quality (see, e.g. [17]).

Intuitively, when a rule scores a high support, an evaluation algorithm may conclude that it is worth to further consider the

rule at hand, since there exist a significant fraction of the database tuples that satisfy the conjunction of the atoms in the

rule. Confidence shows to what extent a given rule is true within the database at hand. The gain index [7, 13] is employed

as a combined measure of support and confidence. Intuitively, it is desirable to have rules with both high confidence and

support. Indeed, gain can be seen as a combined measure of rules’ quality in terms of both support and confidence (note

that gain can be rewritten asgainθ(R, T ) = sup(R, T )(cnf(R, T ) − θ)). The Laplace index [7] is inspired from the

statistical Laplace’s rule, and provides a measure of the probability for a new inserted tuple to satisfy the rule at hand.

Having defined association rules and associated indices (that, in different forms, measure the validity of an association

rule w.r.t. a database where it has been induced from), we are able to formally define next the association rule induction

problems.

Definition 2.14 (Association rule induction problem) Let I be a set of attributes, letT be a database onI, let k, 1 ≤
k ≤ |I|, be a natural number, and lets, 0 < s ≤ 1, be a rational number. Furthermore, letρ ∈ {sup, cnf, laplaceh, gainθ}.
The association rule induction problem〈I, T, ρ, k, s〉, also calledρ-problem, is as follows:Is there a non-trivial associa-

tion ruleR such that|R| ≥ k andρ(R, T ) ≥ s?

In general, we shall measure the complexity of association rule induction problems for the various index forms we have

defined above. As a special case, we shall also consider the complexity of the induction problems when the attribute set

I is assumed not to be part of the input, in which case we will talk aboutfixed schema complexityof the association rule

induction problem.

Remarks.
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1. In the literature it is usually assumed that, in answering an association rule induction problem, one looks for rules

that meet some criteria in terms of two or more indices [7]. Here we prefer to consider one index at a time. Indeed,

this allows to identify complexity sources; moreover, complexity measures for problems involving more than one

index can be obtained fairly easily from problems involving only one index.

2. Highest indices values can be easily obtained building ad hoc trivial rules. Thus, in the following, we will focus our

attention on non-trivial association rules. As an example, consider rule 4 above, regarding databaseDB3, which

is trivial, because of the conditionSpntMoney ∈ [$0, $100] (the whole domain of the attributeSpntMoney is

captured).

3. In the following, we shall study complexities of association rule induction by defining several suitabledecision

problems. It can be objected that inducing association rules is an enumeration problem rather than a decision

problem. However, we observe that complexity of computational problems is studied usually by examining their

decision problem versions. Indeed, computational complexity theory has focused mainly on complexity of decision

problems [14, 21]. In any case, this approach allows us on one hand to state a reasonable form of lower bound over

the enumeration problem and, on the other hand, to single out the source of complexity characterizing the problems

at hand which is the necessary premise to devise algorithms solving the problem as efficiently as possible. In the

following, in Section 3, we shall briefly comment on complexity sources of rule induction problems.

Definition 2.15 (Domain Tailoring) Let I be a set of numerical attributes, and letT be a database onI. Let A be an

attribute inI, and letu be a value. Define

• lub(u,A, T ) = min{v ∈ dom(A, T ) | u ≤ v}, and

• glb(u,A, T ) = max{v ∈ dom(A, T ) | v ≤ u}.

Let C = A ∈ [l, u] (respectivelyC = A /∈ [l, u]) be a nontrivial atomic condition such that|TC | > 0. Define

bot(C, T ) = A ∈ [lub(l, A, T ),glb(u,A, T )]

(A /∈ [lub(l, A, T ),glb(u,A, T )] respectively).

Let C = C1 ∧ . . . ∧ Cn be a nontrivial condition such that|TC | > 0. Define

bot(C, T ) = bot(C1, T ) ∧ . . . ∧ bot(Cn, T ).

Proposition 2.16 Let I be a set of numerical attributes, letT be a database onI, and letC be a nontrivial condition on

a subset ofI such that|TC | > 0. ThenTC = Tbot(C,T ).

Proof. Let C = C1 ∧ . . . ∧ Cn. Simply observe thatdom(C, T ) = dom(bot(C, T ), T ). 2

Proposition 2.16 has the technically important consequence that we can restrict our attention to conditions and association

rules including only values from the input database. In this paper, we will refer to conditions and association rules of this

kind only. The same assumption holds for conditions defined on categorical attributes.
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2.1 Complexity Classes

We assume the reader is familiar with basic concepts regarding computational complexity and, in particular, the com-

plexity classes P (the decision problems solved by polynomial-time bounded deterministic Turing machines),NP (the

decision problems solved by polynomial-time bounded non-deterministic Turing machines) and L (the decision problems

solved by logspace-bounded deterministic Turing machines).

Definition 2.17 Let C be a boolean circuit. Thesizeof C is the total number of gates in it. Thedepthof C is the number

of gates in the longest path inC.

Definition 2.18 MAJORITY gates are unbounded fan-in logic gates (with binary input and output) that output 1 if and

only if more than a half of their inputs are non-zero.

Definition 2.19 A family {Ci} of circuits, whereCi accepts strings of sizei, is uniform if there exists a Turing machine

T which on inputi produces the circuitCi. {Ci} is said to belogspace uniformif T carries out its work usingO(log i)

space.

Definition 2.20 DefineAC0 (respectivelyTC0) as the class of decision problems solved by logspace uniform families of

circuits of polynomial size and constant depth, with AND, OR, and NOT (respectively AND, OR, and MAJORITY) gates

of unbounded fan-in [1, 6, 22].

Definition 2.21 For anyk > 0, #AC0
k is the class of functionsf : {0, 1}∗ → N computed by depthk, polynomial

size logspace uniform families of circuits with+,×-gates (the usual arithmetic sum and product inN) having unbounded

fan-in, where the inputs to the circuit consist ofxi and1 − xi for each input bitxi and of the constants0 and1. Let

#AC0 =
⋃

k>0 #AC0
k [1].

Note that#AC0 circuits take the values1 and0 as inputs, which are considered as natural numbers.

Definition 2.22 GapAC0 is the class of all functionsf : {0, 1}∗ → N that can be expressed as the difference of two

functions in#AC0 [1, 5]. PAC0 is the class of languages{A | ∃f ∈ GapAC0, x ∈ A ⇐⇒ f(x) > 0} [1].

Definition 2.23 Let {Ci} be a uniform family of boolean circuits, and letf(n) andg(n) be functions from the integers

to the integers. We say that theparallel timeof {Ci} is at mostf(n) if for all n the depth ofCn is at mostf(n). We say

that thetotal workof C is at mostg(n) if for all n ≥ 0 the size ofCn is at mostg(n).

Definition 2.24 DefinePT/WK(f(n), g(n)) to be the class of all languagesL ⊆ {0, 1}∗ such that there is a uniform

family of circuits{Ci} decidingL with O(f(n)) parallel time andO(g(n)) work. NC is the classPT/WK(logk, nk)

of all problems solvable in polylogarithmic parallel time with polynomial amount of total work. For anyj ≥ 0, NCj is

the classPT/WK(logj n, nk), that is, the subset ofNC in which the parallel time isO(logj n); the free parameterk

means that it is allowed any degree in the polynomial accounting for the total work.

The above defined classes are of practical relevance since they identify with precision many problems related to simple

arithmetic calculations (e.g.#AC0); furthermore, these classes enclose problems with highly parallelizable algorithmic

structure. For further details, see [25].
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3 Related work and contributions

As far as we know, some computational complexity results pertaining to association rules were presented in [15, 19, 20,

26, 27, 8]. We briefly survey the results presented in these works and then pinpoint relationships with this paper. In [15],

is stated theNP-completeness of the problem〈I, T, sup, k, s〉 on boolean databases, therein called0/1 relations. This is

done through reducing the Balanced Bipartite Clique problem to it. Moreover, it is stated the#P-hardness of the problem

of counting the number of association rules scoring enough support on a boolean database. In [26] the authors defined the

QARMINE(D) decision problem as a sextuple〈I, T, L, πr, s, c〉, whereI is a set of attributes,T is a quantitative database

on I, L ⊆ I, πr is a pattern overI, ands, c are two real numbers such that0 < s ≤ c ≤ 1. They defined apatternover a

set of attributesA1, . . . , Am as a condition of the formA1 ∈ [l1, u1] ∧ . . . ∧ Am ∈ [lm, um] whereli < ui (1 ≤ i ≤ m)

are two distinct real numbers. The answer to the instance〈I, T, L, πr, s, c〉 of the problem QARMINE(D) is “yes” iff

there exists a patternπl on a subset ofL, such thatsup(πl ⇒ πr, T ) ≥ s andcnf(πl ⇒ πr, T ) ≥ c. The QARMINE(D)

problem has been proved to be NP-complete under the general complexity measure, while it is polynomial time solvable

under the fixed schema complexity measure. In [27] a boolean databaseT onI is interpreted as the encoding of a bipartite

graphG = (U, V, E). HereU is the set of itemsI; there is a nodent in V for each tuplet of T , and there is an edge

(A, nt) in E for each tuplet of T and for each attributeA of I such thatt[A] 6= ε. The authors argued that the problem of

enumerating all boolean association rules with high support corresponds to the task of enumerating all the bipartite cliques

(a bipartite clique is a complete bipartite subgraph) of the formIc×Tc, with Ic ⊆ U andTc ⊆ V , subject to the constraint

that |Tc| is greater than a specified threshold. Then, they recall the complexity of some decision problems for maximal

bipartite cliques, and the complexity of the best algorithms for the enumeration of all the maximal bipartite cliques of a

bipartite graph. In [19] and [20], an NP-hardness result is stated regarding the induction of boolean association rules (or,

in general, ofconditions) having an optimalentropyor chi-square, although entropy and chi-square are indices that we do

not consider in this work. The authors of [8] dealt with the complexity of computing all the maximal frequent sets and all

the minimal infrequent sets in a boolean database. Given a set of boolean attributesI, a databaseT on I, and a threshold

t (1 ≤ t ≤ |T |), a subsetX of I is said to befrequent, if |TC(X)| ≥ t, while is said to beinfrequent, if |TC(X)| < t,

whereC(X) denotes the condition
∧

Y ∈X Y = c(Y ). LetMt andIt denote the family of all the maximal frequent sets

and minimal infrequent sets respectively. It is proved that, ifIt 6= ∅, then|Mt| ≤ (|T | − t + 1)|It|, and, hence, that the

complexity of generatingMt ∪ It is equivalent to that of the transversal hypergraph problem (see [10] for the definition

of this problem). As the latter problem is known to be solvable in incremental quasi-polynomial time [12], then the same

result holds for the joint generation of maximal frequent and minimal infrequent sets: for eachk ≤ |Mt ∪ It|, k sets

belonging toMt ∪ It can be generated inpoly(|I|, |T |) + kO(log k) time. We summarize next the contribution of this

paper. Relationships between our contribution and the abovementioned works will be outlined.

• Consider categorical and quantitative databases without nulls; in this setting, we prove that the problem〈I, T, sup, k, s〉
is NP-complete (Theorem 4.2). From the NP-completeness of the problem〈I, T, sup, k, s〉 on boolean databases

stated in [15] there follows the NP-completeness of the same problem on databases with nulls. We note that

databases without nulls form a subset of databases with nulls, thus the result in [15] does not immediately apply.
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Furthermore, in [26] is stated the NP-completeness of the problem of inducing association rules with high support

(and high confidence) on quantitative databases without nulls; however, the proof is carried out under the artificial

assumption that each condition within an association rule must involve an interval containing at least two distinct

numbers. We also observe that in the QARMINE(D) problem the head of the rule is an input parameter.

• We show that, under the general complexity measure, the problem〈I, T, cnf, k, s〉 is NP-complete on databases

with nulls (Theorem 4.11), while it is inTC0 (Theorem 4.7), and hence in P, when databases without nulls are

considered. The analysis of the computational complexity of this problem has been, so far, missing in the literature.

Furthermore, in [26] the problem of inducing quantitative association rules on databases without nulls with simulta-

neously greater confidence and support than two given thresholds is proven to be NP-complete. Here we prove that

the problem of inducing quantitative association rules on databases without nulls with a confidence greater than a

given threshold is in P. Hence, we can conclude that in the problem dealt with in [26], the additional source of com-

plexity arising from the presence of a constraint on the confidence value is hidden by the contemporary presence of

the same constraint on the support value.

• We prove that〈I, T, gainθ, k, s〉 and〈I, T, laplaceh, k, s〉 are NP-complete when both databases with nulls and

databases without nulls are considered (Theorem 4.13 and Corollary 4.14).

• We single out an interesting subset of boolean databases, calledsparse, for which the problem〈I, T, ρ, k, s〉, ρ ∈
{sup, cnf, gainθ, laplaceh}, is solvable in logarithmic space under the general complexity measure (Theorems 5.1

and 5.2).

• We strengthen a result presented in [26], showing that the problem〈I, T, ρ, k, s〉, ρ ∈ {sup, cnf, gainθ, laplaceh},
is solvable in logarithmic space under the fixed schema complexity measure both on databases with nulls and

databases without nulls (Theorems 6.1 and 6.2).

• Finally, we prove complexity results for some interesting special cases of the general rule induction problem,

namely:

– 〈I, T, sup, k, s〉 wheres ∈ (0, 1) is a fixed constant andT is a database with nulls is NP-complete (Theorem

7.1);

– 〈I, T, sup, k, s〉 wherek is a fixed constant andT is boolean database is inTC0 (Theorem 7.4);

– 〈I, T, sup, k, s〉 whereds|T |e is a fixed constant andT is boolean database is inTC0 (Theorem 7.7);

– 〈I, T, sup, k, s〉 wherek andds|T |e are two fixed constants andT is a boolean database is inAC0
2 (Theorem

7.8).

We recall that in [27] is proved that the decision problems associated to the induction of boolean association rules

B ⇒ H such that|B ⇒ H| ≥ k (problem A) orsup(B ⇒ H,T ) ≥ k (problem B) or|B ⇒ H| + sup(B ⇒
H, T ) ≥ k (problem C), wherek is a constant, are polynomial time solvable. While it is not immediately obvious
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Index Database Constraint Complexity Reference

Type

sup,gainθ,laplaceh no nulls NP-complete Th. 4.2, 4.13

cnf no nulls TC0 Th. 4.7

all with nulls NP-complete Cor. 4.4, Th. 4.11, Cor. 4.14

all sparse L Th. 5.1, 5.2

all any |I| fixed L Th. 6.1, 6.2

sup with nulls s fixed NP-complete Th. 7.1

sup boolean k fixed TC0 Th. 7.4

sup boolean s|T | fixed TC0 Th. 7.7

sup boolean s|T | andk fixed AC0
2 Th. 7.8

Figure 5: Summary of complexity results for〈I, T, ρ, k, s〉.

to compare these results with ours, we note that, in any case, generally speaking, the results presented here seem to

state stronger complexity bounds.

In conclusion, we recall that problems belonging to classes asAC0, TC0 andL are very efficiently parallelizable (indeed

AC0 ⊆ TC0 ⊆ NC1 ⊆ L ⊆ NC2), so that the algorithm design effort could be addressed accordingly. These complexity

results are summarized in Table 5. Before proceeding, it is worth briefly commenting on the results presented in the table:

• Under the general complexity measure, all the problems considered areNP-complete in the presence of null values;

therefore, dealing with databases where null appear makes, “per se” the task of rule induction very demanding from

the computational point of view;

• Under the general complexity measure, the problem〈I, T, cnf, k, s〉 becomes tractable when databases without

nulls are considered, while the other problems remain intractable; this means that looking for rules with high-

confidence is easier than generating rules scoring high values for the other indexes; the reason here (as implicitly

shown in the proof of Lemma 4.5 and Theorem 4.7) is that well-suited rules can be easily enumerated using a

polynomial method;

• If we impose a bound on the length of the tuples appearing in the database or a bound on the number of attributes

on which a database is defined, then all the problems become highly parallelizable; intuitively speaking, this kind

of result can be understood if one considers that the number of candidate rules is polynomial and different rules can

be generated independently one from another, when such bounds are imposed;

• The problem〈I, T, sup, k, s〉 on databases with nulls becomes highly parallelizable, when eitherk or s|T | is held

fixed; in this case, the same considerations drawn for the item above apply.
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G

Tclq I1 I2 I3 I4 I5 I6

t{v1,v2} 0 0 1 1 1 1

t{v1,v4} 0 1 1 0 1 1

t{v1,v5} 0 1 1 1 0 1

t{v1,v6} 0 1 1 1 1 0

t{v2,v3} 1 0 0 1 1 1

t{v2,v4} 1 0 1 0 1 1

t{v2,v5} 1 0 1 1 0 1

t{v3,v4} 1 1 0 0 1 1

t{v4,v5} 1 1 1 0 0 1

t{v5,v6} 1 1 1 1 0 0

Figure 6: An example of the reduction used in Theorem 4.2

4 General complexity results

Here we investigate the complexity of solving〈I, T, ρ, k, s〉 whenI, T, k ands are inputs.

4.1 Support-problems

Here, we prove that, when support is used as the reference index, the association rule mining problem is NP-complete

both in the presence and in the absence of nulls.

In [15] (see Theorem 4) is stated the NP-completeness of the problem〈I, T, sup, k, s〉 whenT is a boolean database,

therein called0/1-relation. From this result immediately follows the NP-completeness of the problem〈I, T, sup, k, s〉 on

databases with nulls. The following theorem states that the problem〈I, T, sup, k, s〉 remains intractable even if we restrict

our attention to databases without nulls (we note that databases without nulls form a subset of the most general case, those

of databases with nulls). In particular, the next result, extends those presented in [26], that applies only to numerical

databases without nulls with conditions on intervals containing at least two distinct numbers. Furthermore, Theorem

4.2 can be quite immediately extended to prove the NP-completeness of the general case, as stated by the subsequent

Corollary 4.4 which is presented below.

Proposition 4.1 Consider the problemP = 〈I, T, sup, k, s〉. If there is a ruleB ⇒ H that is a solution forP, then for

eachk′, 1 < k′ ≤ k, there is a ruleB′ ⇒ H ′ of sizek′ such thatsup(B′ ⇒ H ′, T ) ≥ s.

Proof. Given a conditionC and a databaseT , such thatsup(C, T ) ≥ s, simply note that it is easy to build a conditionC ′

such thatatt(C ′) ⊆ att(C) and|TC′ | ≥ |TC | holds. 2

Theorem 4.2 Given a databaseT without nulls, the problem〈I, T, sup, k, s〉 is NP-complete.

Proof of Theorem 4.2. (Hardness) The proof is by reduction of the problemCLIQUE, which is well-known to be NP-

complete [14]. LetG = (V, E) be an undirected graph, whereV = {v1, . . . , vn} is a set of nodes, andE = {e1, . . . , em}
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is a set of edgesei = {vpi , vqi}, pi, qi ∈ {1, . . . , n}, for i = 1, . . . , m. Let h be an integer. TheCLIQUE problem is:

Does there exist inG a complete subgraph (clique) of size at leasth ? W.l.o.g. suppose the graphG is connected. We

build an instance〈Iclq, T clq, sup, k, s〉 as follows (an example of this reduction is reported in Figure 6):

• let Iclq be the set consisting of the attributesI1, . . . , In, such thatIj represents the nodevj of G, for eachj =

1, . . . , n;

• let T clq be the database onIclq consisting of a tupletei
, for eachi = 1, . . . , m, such thattei

[Ij ] = 0 if vj ∈ ei, and

tei
[Ij ] = 1 otherwise (so thattei

encodes the edgeei of G).

• let k ben− h;

• let s be h(h−1)
2m .

Next, we prove thatG has a clique of sizeh iff 〈Iclq, T clq, sup, k, s〉 is a YES instance.

The following Claim holds.

Claim 4.3 LetIj ∈ Iclq, letC ′ = (Ij = 0), and letC ′′ be a nontrivial condition defined on a subset ofIclq −{Ij}. Then

|T clq
C′∧C′′ | ≤ n− |C ′ ∧ C ′′|.

Proof of Claim 4.3. We distinguish two cases:

1. C ′′ contains a conditionIa = 0 (1 ≤ a ≤ n). Then, clearly,|T clq
C′∧C′′ | ≤ 1.

2. C ′′ contains only conditions of the formIa = 1 (1 ≤ a ≤ n). Let vj be the node corresponding to the attributeIj .

Observe that

|T clq
C′∧C′′ | = |{v ∈ V : {vj , v} ∈ E}| − |{va ∈ V : {vj , va} ∈ E ∧ Ia ∈ att(C ′′)}| =

= |{va ∈ V : {vj , va} ∈ E ∧ Ia 6∈ att(C ′′)}| ≤ n− |C ′ ∧ C ′′|.

2

We can now resume the proof of the theorem.(⇒) Let C = {vr1 , . . . , vrh
} be a clique of sizeh in G. Consider the

condition

B ∧H =


 ∧

vj∈(V−C)

(Ij = 1)


 .

SinceG is connected, for eachj, 1 ≤ j ≤ n, there is at least a tuplet such thatt[Ij ] = 0, thusB ∧H is not trivial. By

definition of clique, there areh(h−1)
2 edges ofG connecting nodes inC. Therefore, the cardinality of the set

T ′ = {t{vrx ,vry} ∈ T clq | 1 ≤ x < y ≤ h}

equalsh(h−1)
2 . SinceT ′ ⊆ T clq

B∧H , thensup(B ⇒ H, T clq) = |T clq
B∧H |
|T clq| ≥ h(h−1)

2m .

(⇐) By Proposition 4.1, if〈Iclq, T clq, sup, n − h, h(h−1)
2m 〉 is a YES instance then there is a nontrivial ruleB ⇒ H
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of sizen− h such that|T clq
B∧H | ≥ h(h−1)

2 . W.l.o.g. assumeh ≥ 4. Note that conditions of the formIj ∈ [0, 1] are trivial.

Suppose that there is a conditionIj = 0 occurring inB ⇒ H, then, by Claim 4.3,

|T clq
B∧H | ≤ n− |B ∧H| = h <

h(h− 1)
2

.

Hence only conditions of the formIj = 1 can appear inB ⇒ H. Let Iclq − att(B ∧H) = {Ir1 , . . . , Irh
}. In order to

be|T clq
B∧H | ≥ h(h−1)

2 , T clq
B∧H contains, at least, the set

{t{vrx ,vry} ∈ T clq | 1 ≤ x < y ≤ h},

i.e. the nodesvr1 , . . . , vrh
form a clique ofG with sizeh.

(Membership) A certificate for〈I, T, sup, k, s〉 is given by an association ruleB ⇒ H defined on a subset ofI. This can

be checked in polynomial time by verifying thatB ⇒ H is not trivial, that|B ⇒ H| ≥ k, and thatsup(B ⇒ H, T ) ≥ s.

2

Corollary 4.4 Given a databaseT with nulls, the complexity of〈I, T, sup, k, s〉 is NP-complete.

Proof of Corollary 4.4. Hardness is proved by means of Theorem 4.2, since databases with nulls are a superset of

databases without nulls. Membership in NP is straightforward. 2

4.2 Confidence-problems for databases without nulls

It is generally believed that when both support and confidence are measured, the task of filtering out those rules with low

confidence from a set of rules having support above a certain threshold is far easier to compute [3, 27]. We prove that

the problem of finding association rules with high confidence on databases without nulls is a tractable subcase, while the

same problem on databases with nulls remains computationally demanding.

Lemma 4.5 Let I be a set of attributes, letT be a database without nulls onI, and lets, 0 < s ≤ 1, be a rational

number. Then there is a nontrivial association ruleB ⇒ H on I such thatcnf(B ⇒ H, T ) ≥ s iff there is an attribute

JH ∈ I, a valueuH ∈ dom(JH , T ), and a tuplet ∈ T , such that the rule


 ∧

J∈(I−{JH})
(J = t[J ])


 ⇒ (JH 6= uH)

is nontrivial and has a confidence greater than or equal tos.

Proof. (⇒) Let

(B ⇒ H) = (C1 ∧ . . . ∧ Ch ⇒ Ch+1 ∧ . . . ∧ Ck)

be a nontrivial rule such thatCi is an atomic condition, for eachi = 1, . . . , k, andcnf(B ⇒ H,T ) ≥ s. Let JH be

att(Ck), and letuH ∈ (dom(JH , T )− dom(Ck, T )). SinceCk is not trivial,uH exists. Consider the rule

(B′ ⇒ H ′) = (C1 ∧ . . . ∧ Ck−1 ⇒ (JH 6= uH)).
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Figure 7: The example databaseDB4

Then, from|TB′∧H′ | ≥ |TB∧H | and|TB′ | ≤ |TB |, it follows that

cnf(B′ ⇒ H ′, T ) =
|TB′∧H′ |
|TB′ | ≥ |TB∧H |

|TB | = cnf(B ⇒ H, T ).

Let I − {JH} = J1, . . . , Jn−1. For eacht ∈ T , we denote byC(t) the condition

(J1 = t[J1]) ∧ . . . ∧ (Jn−1 = t[Jn−1]).

Let T ′ be a maximal subset ofTB′ such that for not, t′ ∈ T ′ it holds that

(t[J1] = t′[J1]) ∧ . . . ∧ (t[Jn−1] = t′[Jn−1]).

We show that for somet ∈ T ′ it holds that
|TC(t)∧H′ |
|TC(t)| ≥ s. Assume by way of contradiction, for eacht ∈ T ′,

|TC(t)∧H′ |
|TC(t)| < s.

Then

cnf(B′ ⇒ H ′, T ) = |St′∈T ′ TC(t′)∧H′ |
|St′′∈T ′ TC(t′′)| =

P
t′∈T ′ |TC(t′)∧H′ |P

t′′∈T ′ |TC(t′′)| <
P

t′∈T ′ s|TC(t′)|P
t′′∈T ′ |TC(t′′)| = s,

which contradicts the fact thatcnf(B′ ⇒ H ′, T ) ≥ s. Then there is somet ∈ T ′ such that
|TC(t)∧H′ |
|TC(t)| ≥ s. Hence

C(t) ⇒ H ′ is the required rule. Indeed,C(t) ⇒ H ′ is not trivial sinceB ⇒ H is not trivial: note that for eachi,

1 ≤ i ≤ k − 1, we have thatdom(Ji = t[Ji], T ) ⊆ dom(Ci, T ) and, furthermore,dom(JH 6= uH) ⊆ dom(Ck, T ).

(⇐) Straightforward. 2

Example 4.6 To illustrate Lemma 4.5, consider the simple example databaseDB4, in Figure 7. Consider the ruleR

A ∈ [1, 2] ⇒ B ∈ [1, 2]

for which we havecnf(R,DB4) = 0.75. The elementu = 3 is such that

u ∈ (dom(B,DB4)− dom(B ∈ [1, 2],DB4))

By Lemma 4.5, the setS of rules of the form

A = x ⇒ B 6= 3
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for x ∈ dom(A,DB4), contains at least a ruleR′ such thatcnf(R′,DB4) ≥ 0.75. Indeed,S includes the following

rules

A = 1 ⇒ B 6= 3, (7)

A = 2 ⇒ B 6= 3, (8)

A = 3 ⇒ B 6= 3, (9)

among which both rule 7 and rule 9 score a confidence value equal to1.

An immediate consequence of Lemma 4.5 is that the problem〈I, T, cnf, k, s〉 on databases without nulls is polynomial-

time decidable. Indeed, it suffices to guess all the conditions of the form illustrated above, whose number is polynomially

bounded, and then check if at least one of these rules scores enough confidence on the input database. Nevertheless, we

are able to provide a tighter bound on the complexity of this problem, as stated by the following theorem.

Theorem 4.7 Given a databaseT without nulls, the problem〈I, T, cnf, k, s〉 is in TC0.

Proof. Let I = {I1, . . . , Im} be a set of attributes, andT = {t1, . . . , tn} be a database without nulls onI. In the rest

of the proof, whenever we use the subscriptsi, i′, j, j′, j′′ andh, we assume that1 ≤ i, i′ ≤ m, 1 ≤ j, j′, j′′ ≤ n,

and1 ≤ h ≤ dlog2 ne. Let U(n) denote the set{0, 1, . . . , n − 1} of natural numbers. Letei : dom(Ii, T ) 7→ U(n) an

injective function. Giveny ∈ U(n), we denote bybh(y) theh-th bit of the binary encoding ofy. W.l.o.g., we can assume

thatT is encoded as am×n×dlog2 nematrixen(T ) of bits, whose elementsxi,j,h are such thatxi,j,h = bh(ei(tj [Ii])).

Now, we build a logspace uniform family{Cm,n}1 of circuits of polynomial size and constant depth, with AND, OR, and

MAJORITY gates of unbounded fan-in. The circuitCm,n takes as inputen(T ) and will output 1 iff〈I, T, cnf, k, s〉 is a

YES instance. A circuitCm,n is constituted of a set ofTC0 circuitsR(i, j, 1), . . . , R(i, j, n). A circuit R(i, j, j′) takes

in inputen(T ) and outputs 1 iff the ruleχi,j,j′ ≡ (χi,j ⇒ (Ii 6= tj′ [Ii])) scores enough confidence, where

χi,j ≡

 ∧

i′∈{1,...,i−1,i+1,...,m}
(Ii′ = tj [Ii′ ])




Thus, each circuitR(i, j, j′) is introduced in order to guess one of the rules of the form stated by Lemma 4.5. In particular,

i andj′ identify the attributeIi and the valuetj′ [Ii] appearing in head of the rule, respectively, whilej identifies the

valuestj [Ii′ ] (i′ 6= i) appearing in the body of the rule. The output ofCm,n is obtained by wiring the output of the circuits

R(i, j, j′) through an OR gate. To conclude the proof, we will have to show that the circuitsR(i, j, j′) are inTC0. In the

following we denote byχi,j,j′ the ruleχi,j ⇒ Ii = (tj′ [Ii]).

Claim 4.8 For each conditionχi,j (rule χi,j,j′ , respectively) there is a family{count(χi,j)m,n} ({count(χi,j,j′)m,n},
respectively) of#AC0 circuits computing|Tχi,j | (|Tχi,j,j′ |, respectively) over any inputen(T ).

1Note that in this theorem and in the following, by a little abuse of notation, and for simplicity, we denote a circuit family recognizing inputs in the

form of am× n× dlog2 ne boolean matrix by using the subscriptm, n instead of the usual subscriptCi wherei denotes the input size
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Proof. Consider an atomic condition of the formIi′ = tj [Ii′ ] and a generic tupletj′′ of T . We defineS(j, i′, j′′)

as the#AC0 circuit having2dlog2 ne binary inputs,xi′,j,1, . . . , xi′,j,dlog2 ne (the encoding oftj [Ii′ ] in en(T )), and

xi′,j′′,1, . . . , xi′,j′′,dlog2 ne (the encoding oftj′′ [Ii′ ] in en(T )), and computing the following function:

dlog2 ne∏

h=1

(xi′,j,h × xi′,j′′,h + (1− xi′,j,h)× (1− xi′,j′′,h)) .

It is immediate to verify that the circuitS(j, i′, j′′) outputs1 if tj′′ [Ii′ ] = tj [Ii′ ], i.e. if tj′′ ` (Ii′ = tj [Ii′ ]), and0

otherwise. Thus, the circuitQ(j, i, j′′) computing the function

S(j, 1, j′′)× . . .× S(j, i− 1, j′′)× S(j, i + 1, j′′)× . . .× S(j, m, j′′)

outputs1 if tj′′ ` χi,j , and0 otherwise. To conclude, we can build a circuitcount(χi,j)m,n as
n∑

j′′=1

Q(j, i, j′′)

and a circuitcount(χi,j,i′)m,n as
n∑

j′′=1

(Q(j, i, j′′)× S(j′, i, j′′)) .

2

Claim 4.9 For each ruleχi,j,j′ there is a constant-depth polynomial size uniform family{R(i, j, j′)m,n} of circuits of

unbounded fan-in AND, OR and MAJORITY gates, such thatR(i, j, j′)m,n outputs1 iff cnf(χi,j,j′ , T ) ≥ s, when the

input database has sizem× n.

Proof. We recall thats, 0 ≤ s ≤ 1, is a rational number. So, there are two natural numbersa andb, b ≥ a, such that

s = a/b. W.l.o.g., we can assume thats is encoded as a pair of natural numbers of the form(a′, b), with a′ = b − a.

Consider the function

f(χi,j,j′ , T, s) = (a′|Tχi,j |+ 1)− b|Tχi,j,j′ |
taking values over integers. As|Tχi,j,j′′ | = |Tχi,j | − |Tχi,j,j′ |, we have thatcnf(χi,j,j′ , T ) ≥ s iff f(χi,j,j′ , T, s) > 0.

We recall the following result [5]: for each integerN there is a log-time uniform#AC0 circuit, which computesN ,

when the binary representation ofN is given in input. Call this circuitnumber(N). Sincea′ andb are integers, we

can build two#AC0 circuits computing the functionsa′|Tχi,j | andb|Tχi,j,j′ |, connectingnumber(a′) to count(χi,j)m,n

andnumber(b) to count(χi,j,j′)m,n. By Definition 2.22, the functionf(χi,j,j′ , T, s) is in the classGapAC0, and the

language

{χi,j,j′ | cnf(χi,j,j′ , T ) ≥ s}
is in the classPAC0 which coincides withTC0 under log-space uniformity [1, 5]. Thus, there is a constant-depth

polynomial size uniform family{C(i, j, j′)m,n} of circuits of unbounded fan-in AND, OR and MAJORITY gates, such

thatR(i, j, j′)m,n outputs 1 iffsup(χi,j,j′ , T ) ≥ s, when the input database has sizem× n. 2

The number of such circuitsR(i, j, j′) is mn2, which is polynomial inm × n, henceCm,n has constant depth and

polynomial size as well. We observe thatCm,n may be easily generated using logarithmic space. Thus, this proves that

the problem〈I, T, cnf, k, s〉 on databases without nulls is inTC0 under the general complexity measure. 2
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4.3 Confidence-problems for databases with nulls

Proposition 4.10 Consider the set of problemsP = {〈I, T, ρ, k, s〉} , whereρ ∈ {cnf, gainθ, laplaceh}. If there is

an association ruleB ⇒ H that is a solution for a problemP ∈ P , then the ruleB′ ⇒ H ′ also solvesP , where

B′ ∧H ′ = B ∧H and|H ′| = 1.

Proof. The proof is straightforward and thus omitted. 2

Theorem 4.11 Given a databaseT with nulls, the complexity of〈I, T, cnf, k, s〉 is NP-complete.

Proof of Theorem 4.11. (Hardness) The proof, as in Theorem 4.2, is by reduction ofCLIQUE. Let G = (V, E) be an

undirected graph, with set of nodesV = {v1, . . . , vn} and set of edgesE = {e1 = {vp1 , vq1}, . . . , em = {vpm
, vqm

}}.
Let h be an integer. We build an instance〈Iclq, T clq, cnf, k, s〉 as follows.

• Let Iclq beI ′ ∪ {In+1}, whereI ′ = {I1, . . . , In}. Ij will represents the nodevj of G, for j = 1, . . . , n, andIn+1

is a new attribute representing a dummy nodevn+1;

• Let T clq = T ′∪T ′′, whereT ′ includes the tuplestei andt′ei
, wheretei [Ij ] = ε (respectivelyt′ei

[Ij ] = ε) if vj ∈ ei,

andtei [Ij ] = 1 (respectivelyt′ei
[Ij ] = 1) otherwise, fori = 1, . . . ,m, j = 1, . . . , n + 1, (the tuplestei andt′ei

both denote the edgeei of G). Furthermore,T ′′ includes the tuplestvi , wheretvi [Ij ] = ε if i = j, andtvi [Ij ] = 1

otherwise, fori = 1, . . . , n + 1, j = 1, . . . , n + 1.

• Let k = n− h + 1;

• Let s = h2

h2+1 .

See Figure 7 for an example of this reduction. We have the following Claim.

Claim 4.12 LetC be a condition on a subset ofI ′, then

1. |T ′C | ≤ 2
(
n−|C|

2

)
, and

2. |T ′′C | ≤ n + 1− |C|.
Proof of Claim 4.12. Point 1 follows by considering thatT ′ contains two tuples for each edge ofG, i.e. T ′ contains

at most2
(
n
2

)
tuples. A condition containing an atomic condition on a generic attributeIj , where1 ≤ j ≤ n + 1 is not

satisfied by the set of tuples{tv,vj |v ∈ V }∪{t′v,vj
|v ∈ V }. In general, a condition of lengthl onT ′ satisfies just a subset

of T ′ representing a subgraph ofG of sizen− l. As for point 2, consider that a condition containing an atomic condition

on a generic attributeIj , where1 ≤ j ≤ n + 1 is not satisfied by the tupletvj . In general, a condition of lengthl can

match onlyn + 1− l tuples ofT ′′. 2

Next, we prove that there is a clique of sizeh in G iff 〈Iclq, T clq, cnf, k, s〉 is a YES instance.(⇒) LetC = {vr1 , . . . , vrh
}

be a clique of sizeh in G. Consider the conditionB =
(∧

vj∈(V−C)(Ij = 1)
)

such that|B| = n − h. By definition of

clique, there existh(h−1)
2 edges ofG connecting nodes inC. Now,

T ′B =
{

t{vrx ,vry}, t
′
{vrx ,vry} | 1 ≤ x < y ≤ h

}
.
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Thus,|T ′B | = 2
(
n−|B|

2

)
= h(h− 1), whereas|T ′′B | = n+1−|B| = h+1. Hence,|T clq

B | = h(h−1)+ (h+1) = h2 +1,

and

cnf(B ⇒ (In+1 = 1), T clq) =
|T clq

B∧(In+1=1)|
|T clq

B | = |T clq
B |−1

|T clq
B | = h2

h2+1 .

(⇐) By Proposition 4.10, if〈Iclq, T clq, cnf, n − h + 1, h2

h2+1 〉 is a YES instance, then there is a ruleR ≡ B ⇒ H on

Iclq, where|H| = 1, such that|B| ≥ n− h .

Note that, ifR would contain an atomic condition of the formIj 6= 1, cnf(R, T clq) would be 0. Hence, only atomic

conditions of the formIj = 1 can appear inR.

The content ofT ′′ implies that there is no association rule having confidence1 on T clq. Furthermore, we have that

|T clq
B | ≥ h2 +1, otherwise the ratio|T

clq
B∧H |
|T clq

B | would not be2 greater than or equal toh2

h2+1 . Two cases have to be considered:

1. In+1 /∈ att(B);

2. In+1 ∈ att(B).

(Case 1) Assume thatatt(B) ⊆ I ′. Then|T clq
B | ≥ h2 + 1 implies that|B| ≤ n − h, and we have already noticed that

|B| ≥ n − h. Thus|B| = n − h and|T clq
B | = h2 + 1. Let I ′ − att(B) = {Ir1 , . . . , Irh

}. Since|B| = n − h, then

|T ′′B | = h + 1, whereas, in order to be|T ′B | = h(h− 1) it is necessary that

T ′B =
{

t{vrx ,vry}, t
′
{vrx ,vry} | 1 ≤ x < y ≤ k

}
,

i.e. the nodesvr1 , . . . , vrh
form a clique ofG having sizeh.

(Case 2) Suppose thatB = B′ ∧ (In+1 = 1). Then|T clq
B | ≥ h2 + 1 implies that|B′| ≤ n− h− 1, and we have already

noticed that|B| ≥ n− h, i.e. |B′| ≥ n− h− 1. Thus|B′| = n− h− 1 and (by recalling Proposition 4.12)

h2 + 1 ≤ |T clq
B | ≤ 2

(
n− |B′|

2

)
+ (n + 1− |B′|) = h2 + 2h + 2.

We can show that there is no tuplet ∈ T ′ such thatt 6` H andt ` B. Assume, by contradiction, that such a tuplet ∈ T ′

exists. Then|T clq
B∧H | ≤ |T ′B | − 2 + |T ′′B | − 1. This implies that the confidence of the association ruleB ⇒ H cannot be

greater than or equal toh2

h2+1 , since, for eachh,

|T clq
B | − 3

|T clq
B |

≤ (h2 + 2h + 2)− 3
h2 + 2h + 2

<
h2

h2 + 1

Indeed, simply note that, assumingh ≥ 1 we have

(h2 + 2h + 2)− 3
h2 + 2h + 2

<
h2

h2 + 1
⇒

h2

h2 + 1
− (h2 + 2h + 2)− 3

h2 + 2h + 2
> 0 ⇒

2h2 − 2h + 1 > 0.

2Consider the inequality m
m+1

≥ m−1
m

.
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I1 I2 I3 I4 I5 I6

t{v1,v2} ε ε 1 1 1 1

t′{v1,v2} ε ε 1 1 1 1

t{v1,v3} ε 1 ε 1 1 1

t′{v1,v3} ε 1 ε 1 1 1

t{v1,v4} ε 1 1 ε 1 1

t′{v1,v4} ε 1 1 ε 1 1

t{v2,v3} 1 ε ε 1 1 1

t′{v2,v3} 1 ε ε 1 1 1

t{v2,v4} 1 ε 1 ε 1 1

t′{v2,v4} 1 ε 1 ε 1 1

t{v3,v4} 1 1 ε ε 1 1

t′{v3,v4} 1 1 ε ε 1 1

t{v3,v5} 1 1 ε 1 ε 1

t′{v3,v5} 1 1 ε 1 ε 1

t{v4,v5} 1 1 1 ε ε 1

t′{v4,v5} 1 1 1 ε ε 1

tv1 ε 1 1 1 1 1

tv2 1 ε 1 1 1 1

tv3 1 1 ε 1 1 1

tv4 1 1 1 ε 1 1

tv5 1 1 1 1 ε 1

tv6 1 1 1 1 1 ε

Figure 8: An example of the reduction used in Theorem 4.11

Thus,H is such that|T ′B∧H | = |T ′B | = |T ′B′ | = |T ′B′∧H |. Since|T clq
B | ≥ h2 + 1 and, by Fact 4.12, we know that

|T clq
B′∧H | ≤ h2 + 1 (note that|B′ ∧H| = n − h), it follows that |T clq

B′∧H | = |T clq
B | = h2 + 1. Let I ′ − att(B ∧H) =

{Ir1 , . . . , Irh
}. Hence

T ′B =
{

t{vrx ,vry}, t
′
{vrx ,vry} | 1 ≤ x < y ≤ h

}
,

i.e., the nodesvr1 , . . . , vrh
form a clique ofG having sizeh.

(Membership) A certificate of membership in NP is given by an association ruleB ⇒ H on I. This can be checked in

polynomial time by verifying thatB ⇒ H is nontrivial,|B ∧H| ≥ k, andcnf(B ⇒ H, T ) ≥ s. 2

4.4 Gain- and Laplace-problems

Despite their syntactical similarity to confidence, the laplace and the gain index “behave” more similarly to support than to

confidence. For instance, consider a ruleB ⇒ H and a databaseT . Theh-laplace index,|TB∧H |+1
|TB |+h , reaches its maximum
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value when|TB∧H | = |TB |. Assume this is indeed the case, then, forlaplaceh(B ⇒ H,T ) ≥ s to hold, it must be the

case that|TB∧H | ≥ hs−1
1−s . Thus, if we search for a rule scoring a high value ofh-laplace, that is whens approaches1, it

is the case that|TB∧H | must approach to∞ and consequently thatsup(B ⇒ H, T ) must approach1, or, in other words,

that the rule must simultaneously score a highh-laplace value and a high support value. This argument is exploited within

the proof of the following Theorem.

Theorem 4.13 Let T be a database without nulls. Then the complexity of〈I, T, ρ, k, s〉, with ρ ∈ {gainθ, laplaceh}, is

NP-complete.

Proof of Theorem 4.13.As for the hardness part of the proof, we follow the same line of reasoning as in Theorem 4.11,

using a reduction ofCLIQUE. Let G = (V, E) be an undirected graph, consisting of a set of nodesV = {v1, . . . , vn}
and of a set of edgesE = {e1 = {vp1 , vq1}, . . . , em = {vpm

, vqm
}}, and letψ be an integer. We build an instance

〈Iclq, T clq, gainθ, k, s〉 (〈Iclq, T clq, laplaceh, k, s〉 respectively
)

as in Theorem 4.11, but in this caseIclq, T clq, k ands

are constructed this way:

• Iclq is the set of attributesI1, . . . In, In+1, whereIj denotes the nodevj of G (j = 1, . . . , n) and In+1 is an

additional attribute;

• T clq includes the tuplestei , t
′
ei

s.t. tei [Ij ] = t′ei
[Ij ] = 0 if vj ∈ ei, and1 otherwise, wheretei and t′ei

both

denote the edgeei of G, for eachi = 1, . . . , m. Furthermore,T clq contains the tuplet0, s.t. t0[Ij ] = 0, for each

j = 1, . . . , n + 1;

• k is set ton− ψ + 1;

• s is set to(1−θ)ψ(ψ−1)
2m+1

(
ψ(ψ−1)+1
ψ(ψ−1)+h respectively

)
.

(Membership) The membership of the problem inNP can be proven following a proof similar of that of Theorem 4.2.2

Corollary 4.14 Let T be a database with nulls. Then the complexity of〈I, T, ρ, k, s〉, whereρ ∈ {gainθ, laplaceh}, is

NP-complete.

Proof of Corollary 4.14. Hardness is proved by Theorem 4.13. Membership in NP is immediate. 2

This closes the complexity analysis of the general association rules induction problems. In the following sections we shall

analyze several interesting special cases thereof.

5 Sparse databases

There are many real world applications characterized by sparse databases. As an example, consider a database of transac-

tions of a large store constructed for basket analysis purposes, where we have a large set of items (attributes), but a small

set thereof involved in each single transaction (tuples). For databases showing this property, complexity figures are quite

different from what we have seen above for the general case.
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Input : a set of attributesI, a sparse databaseT , an integerk, a rationals
begin

for i := 1 to |T | do
if |ti| ≥ k then

for guess := 1 to 2|ti| − 1 do
if guess has exactlyk bits set to1 then begin

count := 0;
for j := 1 to |T | do

if SATISFIES(tj , guess, ti) then count := count + 1;
if count ≥ s|T | then return “yes”;

end;
return “no”;

end.

function SATISFIES(v, guess, u) : boolean;
begin

p := 1;
for q := 1 to |I| do

if u[Aq] = c(Aq) then begin
if guess[p] = 1 and v[Aq] = ε then return false;
p := p + 1;

end;
return true ;

end; { SATISFIES}

Figure 9: The algorithm of Theorem 5.1

Theorem 5.1 LetT be a sparse database. Then the complexity of〈I, T, sup, k, s〉 is in L.

Proof of Theorem 5.1.We build a Turing MachineT employingO(log(max{|I|, |T |})) space, which decides〈I, T, sup,

k, s〉. Let T = {t1, . . . , tm}, and letI = {A1, . . . , An}. Let guess be a counter. Letguess[p] denote the value of the

p-th bit of guess, 1 ≤ p ≤ dlog2(guess)e. The algorithm implemented byT is depicted in Figure 9.T works as follows:

each tupleti is considered, using the counteri, and only those conditions which can satisfied byti are considered. It is

not necessary to represent each guessed condition explicitly; the counterguess is employed instead: thep-th bit of guess

tells whether thep-th non null attribute value occurring inti belongs to the current guessed condition or not. Each guessed

condition is then tested on each transactiontj of T , using the counterj. The countercount takes into account the number

of tuples satisfying the current guessed condition. It is straightforward to note that the space employed corresponds to the

space needed to store the variablesi, j, count, p, q andguess. On the assumption thatT is sparse,i, j andcount need

O(log |T |) space, whereasp, q andguess needO(log |I|) space. Finally, verifying whetherguess has at leastk bits set

to 1 can be easily done in logarithmic space. 2

Theorem 5.2 LetT be a sparse database. Then the complexity of〈I, T, ρ, k, s〉, whereρ ∈ {cnf, gainθ, laplaceh} is in

L.

Proof of Theorem 5.2. The proof follows the same line of reasoning as Theorem 5.1. In this case, two disjoint current

conditions are needed (which represent the body and the head of the current association rule, respectively), and some

further auxiliary logspace counters. 2

23



6 Fixed schema complexity

In this section we improve the result reported in [26], which states the polynomial-time solvability of the association rule

mining problem under the fixed schema complexity measure. For the sake of simplicity, we shall consider only the case

of numerical attributes. The same results can be shown, however, using analogous proofs lines, in the other cases.

Theorem 6.1 Let I be a set of numerical attributes. Then the fixed schema complexity of the problem〈I, T, sup, k, s〉 is

in L.

Proof of Theorem 6.1. (Sketch) Let n = |I|, and letm = |T |. We can build a Turing MachineT employingO(log m)

space, which solves〈I, T, sup, k, s〉. T uses2n pointerspl
j , pu

j , to 2n tuples ofT , of sizeO(log m) each, and2n bits oj

andij , for eachj = 1, . . . , n. An arrangementof T is a4n-tuple

(pl
1, p

u
1 , . . . , pl

n, pu
n, o1, . . . , on, i1, . . . , in) ∈ {1, . . . , m}2n × {0, 1}2n.

Let ti denote thei-th tuple ofT ; defineθ(0) as “∈”, θ(1) as “/∈”, andCj as the condition

Ij θ(oj) [tpl
j
[Ij ], tpu

j
[Ij ]]

for eachj = 1, . . . , n. An arrangement is intended in order to encode the currently guessed condition. A conditionCj

will belong to the currently guessed condition ifij = 1, for eachj = 1 . . . n. T works as follows: it scans, one after

another, all the possible arrangements; for each candidate arrangement it checks whether it encodes a valid condition,

having length at leastk, and, if this succeeds, it is verified that|TC | ≥ s|T |, where

C =
∧

j=1...n
ij=1

Cj .

We note thatT needs an additional amount of space, to store counters and auxiliary pointers, which is logarithmic w.r.t.

the input size. 2

Theorem 6.2 The fixed schema complexity of the problems〈I, T, ρ, k, s〉, whereρ ∈ {cnf, gainθ, laplaceh} is in L.

Proof of Theorem 6.2. (Sketch) The proof uses the same line of reasoning as in Theorem 6.1. Letn = |I|, and let

m = |T |. As above, we build a Turing MachineT employingO(log m) space, which solves〈I, T, ρ, k, s〉, where

ρ ∈ {cnf, gainθ, laplaceh}. For each currently guessed ruleB ⇒ C, T must verify that, respectively:

• |TB∧C | ≥ s|TB | if ρ = cnf ;

• |TB∧C | ≥ s|T |+ θ|TB | if ρ = gainθ;

• |TB∧C |+ 1 ≥ s(|Tb|+ h) if ρ = laplaceh.

As in Theorem 6.1,T employs a fixed number of log-space counters, in order to carry this out. 2
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7 Further complexity results

This section studies the computational complexity of several interesting special cases of mining association rules. Most of

these cases assume some parameters (e.g., the lower bound on the rule lengthk, the index value thresholds) of the general

association rule mining problem to be given constants. The relevance of the analysis we present below is two-fold. First,

it contributes to understand actual complexity sources. Second, from a practical point of view, users are often interested

in solving such simplified tasks, as, for instance, when one wishes to mine only rules with a support always larger than

0.75.

7.1 Support-problems with fixed threshold

As stated below, the rule mining problem remains very hard to solve even if the support thresholds is not part of the input.

Theorem 7.1 The problem〈I, T, sup, k, s〉 wheres is a fixed constant in(0, 1), andT is a database with nulls isNP-

complete.

Proof. (Hardness) The proof is by reduction ofCLIQUE. Let G = (V, E) be an undirected graph, consisting of a

set of nodesV = {v1, . . . , vn} and set of edgesE = {(vp1 , vq1), . . . , (vpm , vqm)}. Let h be an integer. We build a

corresponding instance〈Iclq, T clq, sup, k, s〉 as follows:

1. let Iclq be the set consisting of the attributesI1, . . . In, In+1, whereIj represents the nodevj of G, for j = 1, . . . , n

andIn+1 is an additional attribute;

2. Let T clq be a set built as the union of the following sets of tuples:

• TG, which, for each edge(vpi , vqi) of G (i = 1, . . . , m) includes a tupleti such thatti[Ipi ] = ti[Iqi ] =

ti[In+1] = ε, whereasti[Ij ] = 1 otherwise (j = 1, . . . , n + 1 ).

• T 0, includingc0 copies of a tuplet such thatt[In+1] = 1, andt[Ij ] = ε otherwise (j = 1, . . . , n ), wherec0

is a value to be defined next;

• T 1, consisting ofc1 copies of a tuplet such thatt[In+1] = ε, andt[Ij ] = 1 otherwise (j = 1, . . . , n ), where

c1 is a value to be defined next.

3. let k = n− h;

As for the valuesc0 andc1 we choose two nonnegative integer values such that

s =
h(h−1)

2 + c1

m + c0 + c1
.

It can be shown that such two values exist, and are both polynomial bounded inm. Indeed, letα = h(h − 1)/2, and

s = ax/(bx): we have
ax

bx
=

α + c1

m + c0 + c1
.
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wherea, b andx are positive integers anda < b. Thus,c0 = ax − α andc1 = bx −m − (ax − α). Settingx equal to,

e.g.,m + α, yields the two required values. If can be shown by using the same argumentation of Theorem 4.2, that there

is a clique of sizeh in G iff 〈Iclq, T clq, sup, n− h, s〉 is a YES instance.

(Membership) Same as Theorem 4.4. 2

Example 7.2 The following example shows how reduction fromCLIQUE to 〈Iclq, T clq, sup, k, s〉, used in Theorem 7.1,

is applied to a givenCLIQUE instance. Assume graphG of Figure 10 is given, and that we want to build a corresponding

instance of〈Iclq, T clq, sup, k, 1
2 〉, such thatG has a clique of size3 iff 〈Iclq, T clq, sup, k, 1

2 〉 is a YES instance. Note that

G has5 nodes and8 edges. Thus:

1. Iclq is {I1, . . . , I6};

2. T clq is a set composed by the union of the following sets of tuples:

• TG, which, for each edge(vpi , vqi) of G (i = 1, . . . , 8) includes a tupleti such thatti[Ipi ] = ti[Iqi ] =

ti[I6] = ε, whereasti[Ij ] = 1 otherwise (j = 1, . . . , 5 ).

• T 0, includingc0 copies of a tuplet such thatt[I6] = 1, andt[Ij ] = ε otherwise (j = 1, . . . , 5 ), wherec0 = 3;

• T 1, consisting ofc1 copies of a tuplet such thatt[I6] = ε, andt[Ij ] = 1 otherwise (j = 1, . . . , 5 ), where

c1 = 5.

3. let k = 5− 3 = 2;

Note thatc0 andc1 are such that
1
2

=
3(3−1)

2 + c1

8 + c1 + c0
.

The resulting databaseT clq is shown in Figure 10.

Remark. Note that the special case〈I, T, sup, k, 1〉 can be easily shown to be in P.

7.2 Support-problems with fixed thresholds on boolean databases

Lemma 7.3 Let C be a condition on a set of boolean attributes. Then there is a family{count(C)m,n} 3 of #AC0
2

circuits computing|TC | over any input databaseT defined on a set of boolean attributesI such thatI ⊇ att(C).

Proof. Let att(C) ⊆ I = {A1, . . . , An}. We define the family{count(C)m,n} of #AC0
2 circuits as follows. The

circuit count(C)m,n hasm × n binary inputsxi,j , i = 1, . . . , m, j = 1, . . . , n, with m = |T | andn = |I|. The input

xi,j is 1 if ti[Aj ] = c(Aj), 0 otherwise (i.e. ifti[Aj ] = ε). The first level ofcount(C)m,n consists ofm ×-gates

Gi, for i = 1, . . . ,m. Each gateGi receives the|C| inputs{xi,k | Ak ∈ att(C)}. Thus the output ofGi is 1 iff

3Note that here and elsewhere, by little abuse of notation, and for simplicity, we denote a circuit family recognizing inputs in the form of am × n

boolean matrix by using the subscriptm, n instead of the usual subscriptCi wherei denotes the input size
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I1 I2 I3 I4 I5 I6

t{v1,v2} ε ε 1 1 1 ε

t{v1,v3} ε 1 ε 1 1 ε

t{v1,v4} ε 1 1 ε 1 ε

t{v2,v3} 1 ε ε 1 1 ε

t{v2,v4} 1 ε 1 ε 1 ε

t{v3,v4} 1 1 ε ε 1 ε

t{v3,v5} 1 1 ε 1 ε ε

t{v4,v5} 1 1 1 ε ε ε

t1 ε ε ε ε ε 1

· · ·

t8 ε ε ε ε ε 1

t9 1 1 1 1 1 ε

· · ·

t20 1 1 1 1 1 ε

Figure 10: An example of the reduction used in Theorem 7.1
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ti ` C. The second level ofcount(C)m,n consists of a single+-gate receiving in input the outputs of all theGi gates,

for i = 1, . . . ,m. Thus the circuitcount(C)m,n calculates|TC | when the input has sizem× n. 2

The following Theorems (7.4, 7.7 and 7.8) associate some task related to mining association rules to very low complexity

classes such asTC0 andAC0. It turns out that these problems are highly parallelizable (recall thatAC0 ⊂ TC0 ⊆ NC1,

[16]).

Theorem 7.4 LetI be a set of boolean attributes, and letk be a fixed constant. Then the complexity of〈I, T, sup, k, s〉 is

in TC0.

Proof. Exploiting Lemma 7.3 and using the same argumentation of Claim 4.9, it can be shown that the language

{B ⇒ H on I | sup(B ⇒ H,T ) ≥ s}

is in the classTC0. Thus, there is a constant-depth polynomial size uniform family{C ′(IR)m,n} of circuits of unbounded

fan-in AND, OR and MAJORITY gates, such thatC ′(IR)m,n outputs 1 iffsup(B ⇒ H,T ) ≥ s, when the input database

has sizem × n. We can build aTC0 family of circuits solving the〈I, T, sup, k, s〉 problem whenk is fixed as follows.

Consider the circuitC(I)m,n obtained connecting the outputs of all the circuitsC ′(IR)m,n, whereIR ∈ {S | S ⊆
I, |S| = k}, through an OR gate. Since the number of these circuits is

(|I|
k

)
= O(|I|k), hence polynomial in|I|, C(I)m,n

has constant depth and polynomial size as well. The result then follows from Proposition 4.1. 2

Figure 11 describes a generic circuit belonging to the above family, wherez =
(|I|

k

)
. AssumingI = {A1, . . . , An} and

T = {t1, . . . , tm}, the generic input is represented by settingini,j to 1 iff ti[Aj ] = c(Aj).

Figure 11: A generic circuit belonging to the family defined in Theorem 7.4

It is of interest to investigate the complexity of mining association rules when the values|T | is fixed. In this case

〈I, T, sup, k, s〉 corresponds to the problem of finding an association rule satisfied by almost a fixed number of transac-

tions. Such a problem becomes of relevance when it is necessary to find a set of transactions of given size satisfying a

certain property (e.g. in statistic sampling, see [24]).
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Definition 7.5 Given a set of boolean attributesI = {A1, . . . , An}, and a databaseT = {t1, . . . , tm} defined onI, we

define〈I, T 〉−1 to be equal to the pair〈I ′, T ′〉, whereI ′ = {A′1, . . . , A′m} is a set of boolean attributes, where each

A′j denotes thej-th tuple ofT , for j = 1, . . . , m, andT ′ = {t′1, . . . , t′n} is a database defined onI ′, with t′i such that

t′i[A
′
j ] = 1 if tj [Ai] = c(Ai), andt′i[A

′
j ] = ε otherwise (i.e. iftj [Ai] = ε), corresponding to thei-th attribute ofI, for

i = 1, . . . , n, j = 1, . . . ,m.

Proposition 7.6 Let beI a set of boolean attributes, letT be a database onI, let k be a natural number,1 ≤ k ≤ |I| , let

s, 0 ≤ s ≤ 1, be a rational number, and let〈I ′, T ′〉 = 〈I, T 〉−1. Then:

〈I, T, sup, k, s〉 is a YES instance⇐⇒ 〈I ′, T ′, sup, ds|T |e, k

|I| 〉 is a YES instance

Proof. 〈I, T, sup, k, s〉 is a YES instance iff there is an association ruleB ⇒ H on I s.t. |B ⇒ H| ≥ k and

|TB∧H | ≥ ds|T |e iff there is an association ruleB′ ⇒ H ′ on I ′ s.t. |B′ ⇒ H ′| ≥ ds|T |e and |T ′B′∧H′ | ≥ k iff

〈I ′, T ′, sup, ds|T |e, k
|I| 〉 is a YES instance. 2

Theorem 7.7 LetI be a set of boolean attributes, and letds|T |e be a fixed constant. Then the complexity of〈I, T, sup, k, s〉
is in TC0.

Proof. The result follows immediately from Theorem 7.4 and Proposition 7.6. 2

Theorem 7.8 Let I be a set of boolean attributes, and letk and ds|T |e two fixed constants. Then the complexity of

〈I, T, sup, k, s〉 is in AC0
2.

Proof. Let I = {A1, . . . , An}, and letT = {t1, . . . , tm}. Let B ⇒ H be an association rule onI, and letIR be the set

att(B ∧H). Define the family{C ′(IR)m,n} of AC0
3 circuits as follows. The circuitC ′(IR)m,n hasn×m binary inputs

xi,j , i = 1, . . . , m, j = 1, . . . , n, with m = |T | andn = |I|. The inputxi,j is 1 if ti[Aj ] = c(Aj), 0 otherwise (i.e. if

ti[Aj ] = ε). The first level ofC ′(IR)m,n consists ofm AND gatesG1
i , for i = 1, . . . ,m. Each gateG1

i receives the|IR|
inputs{xi,k | Ak ∈ IR}. Thus the output ofG1

i is 1 iff ti ` (B ∧H). The second level ofC ′(IR)m,n consists of
(

m
dsme

)

AND gatesG2
j , for j = 1, . . . , |g| where

g = {F ⊆ {G1
1, . . . , G

1
m} : |F | = dsme}.

I1 I2 I3 I4

t1 ε 1 ε ε

t2 ε 1 1 1

t3 1 ε 1 1

I ′1 I ′2 I ′3

t′1 ε ε 1

t′2 1 1 ε

t′3 ε 1 1

t′4 ε 1 1

Figure 12: A database〈I, T 〉 and its transposed version〈I ′, T ′〉−1.
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The gateG2
j receives in input the outputs of thedsme gates contained within thej-th element ofg. The third level consists

of a single OR gate receiving in input the outputs of all theG2
j gates, forj = 1, . . . ,

(
m
dsme

)
. Thus the circuitC ′(IR)m,n

decides if|TB∧H | ≥ dsme. The size of each circuitC ′(IR)m,n is polynomial, because|g| ≤ mdsme, anddsme is fixed.

We can build anAC0 circuit solving〈I, T, sup, k, s〉, for k andds|T |e fixed, as follows. Consider the circuitC(I)m,n

obtained connecting the outputs of all the circuitsC ′(IR)m,n, with IR ⊆ I such that|IR| = k (this suffices by Proposition

4.1), through an OR gate. Since the number of these circuits is
(|I|

k

)
= O(|I|k), hence polynomial,Cm,n(I) has constant

depth and polynomial size as well. The first and second level (of AND gates), and the third and fourth level (of OR gates),

can be easily each reorganized into a single level, thus giving an overall circuit family of depth 2. Hence the result follows.

2

8 Conclusions

In this paper we have analyzed the computational complexity of mining association rules. We have considered the most

widely accepted form of association rules that use well-known quality indices, namely, support, confidence, gain and

laplace. After having formally defined association rule mining problems, we have shown that the general versions of

these problems are NP-complete, except when confidence is considered over databases without nulls. Then, we have

analyzed several interesting restricted cases, for most of which lower complexity bounds have been proved to hold. It is

relevant to note that these cases are often related to complexity classes for which the existence of highly parallelizable

algorithms has been shown. For example, for sparse databases, the complexities of the mining problems are within L. In

some other cases the mining problems lie withinTC0 or within AC0
2. The complexity analysis presented in this paper

may be extended to include other forms of quality indices like, for instance,entropyandimprovement[19, 18]. Moreover,

other forms of association rules might be considered as, for instance, sequential patterns [4]. We leave these topics to

future research.
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