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Abstract

Inducing association rules is one of the central tasks in data mining applications. Quantitative association rules induced

from databases describe rich and hidden relationships to be found within data that can prove useful for various application

purposes (e.g., market basket analysis, customer profiling, and others). Although association rules are quite widely used

in practice, a thorough analysis of the related computational complexity is missing. This paper intends to provide a

contribution in this setting. To this end, we first formally define quantitative association rule mining problems, which

include boolean association rules as a special case; we then analyze computational complexity of such problems. The

general problem as well as some interesting special cases are considered.



1 Introduction

The enormous growth of information available in database systems has led to a significant development of techniques
for knowledge discovery in databases. At the heart of the knowledge discovery process is the application of data mining
algorithms that are in charge of extracting hidden relationships among pieces of information stored in a given database
[11]. The most widely used data mining techniques include classification algorithms, cluster analysis and association rule
induction [2]. In this paper, we focus on this last data mining technique. Informally speaking, an association rule states
that, in the database at hand, a conjunction of conditions implies a consequence. For instanceh#mebuwiger, fries

= soft-drink induced from a purchase database, tells that a customer purchasing a hamburger and fries also purchases
a soft-drink. An association rule induced from a database is interesting if it describes a relationship that is “valid” as
far as the information stored in the database is concerned. To state such a \aliiligsare used, that is, functions

with values usually if0, 1]. An index tells to what extent an extracted association rule describes knowledge valid in the
database at hand. For instancepafidencevalue of 0.7, associated to the rule above, tells that 70 percent of purchases
including hamburgers and fries also include a soft-drink. In the literature, several indices have been proposed (see e.g.
[7], where several quality criteria are proposed). Clear enough, information patterns expressed in the form of association
rules and associated indices indeed represent knowledge that might be useful in several application areas, such as, market
basket analysis and fraud detection, just to mention a few. In some application areas, hbaelkEmassociation

rules, like the one above, are not expressive enough for the purposes of the given knowledge discovery task. In order
to obtain more expressive association rules, one can allow more general forms of conditions to occur therein. Given a
categorical attributeA (an attribute having a discrete, unordered domain associatadjnericattribute A’ (an attribute
associated with an ordered domain of numbers), a categorical domainyane two numeric valudé andu’ (I’ < '),
guantitative association rulgi3] are such that both the premise and the consequence use conditions of the following

forms: (i) A = w; (i1) A # u; (4i) A" € [I,]; (i) A’ ¢ [I’,«/]. For instance, the quantitative rule
(hamburgere [2, 4]), (ice-cream-taste- chocolaté = (soft-drink € [1, 3])

induced from a purchase database, specifies a pattern telling that a customer purchasing from 2 to 4 hamburgers and
a chocolate ice-cream also purchases from 1 to 3 soft-drinks. In either forms, inducing association rules is a quite
widely used data mining technique, several systems have been developed based from them [3, 18], and several successful
applications in various contexts have been described [9]. Despite the wide spread utilization of association rule induction
in practical applications, a thorough analysis of the complexity of the associated computational tasks has not been yet
developed. However, such analysis appears to be important since, as in other contexts, an appropriate understanding
of the computational characteristics of the problem at hand makes it possible to single out tractable cases of generally
untractable problems, isolate hard complexity sources and, overall, to devise more effective approaches to algorithm
development.

We define a form of association rules that generalizes over the quantitative, categorical and the boolean attributes.
We allow the null values (in the following indicated byto occur in the database denoting the absence of information.

When we induce association rules from databases with nulls, it is forbidden to specify conditions on null values. A



boolean association rule can be thus regarded as a special case of quantitative or categorical association rule mined on
a database with nulls. Indeed, according to the definitions in [2], given a set of Iteasansactiort on [ is a subset

of I, a boolean database on I is a set of transactions oh and a boolean association rule fris an expression of

the form X = Y, where X andY are disjoint subsets af. We capture this formal framework by callirgpolean

a database defined on a set of attributes taking value {ave}, wherec is an arbitrary constant. In this setting, an
association rul€éB; = c) A... A (B, =¢) = (H1 = ¢) A ... N (Hy = ¢) will encode the boolean association rule
Bi,...,B, = Hi,...,H,. According to the formalization introduced in the following section, this is the only kind of

rule allowed on boolean databases, since conditionsvatues are forbidden (and a condition like# c is equivalent

to A = ¢). We analyze the computational complexity of inducing association rules by the most frequently used rule
quality indices, namely, confidence, suppa@rgain andh-laplace [7, 2]. Specifically, we shall show that, depending

on the chosen index of reference, the complexity of the problem is either in P or NP-complete. When databases with
nulls are considered, independently of the reference index, the rule induction task is NP-complete. However, we show
that there are cases where the association rule problem is very easy to solve. To permit a better understanding of the
new complexity results introduced in this work, we describe them in Section 3, after giving the preliminary definitions
that will be used throughout the paper, in Section 2. The rest of this paper is organized as follows. In the next section
preliminary definitions are given. In Section 3 related works and details of the new complexity results introduced in this
work are described. In Section 4 general complexity results about inducing association rules are stated. Sparse databases
and Fixed-schema complexity of rule induction are dealt with in Sections 5 and 6, respectively. Finally, in Section 7

further complexity results about some interesting special cases are collected.

2 Preliminaries

We begin by defining several concepts that will be used throughout the paper, including, among others, those of association

rule induction problems and indices.

Definition 2.1 (Domain) A domainis a finite or countable set of values augmented with the special vatalednull
value A categorical domairn(respectivelynumerical domaipis one whose values are unordered (respectively, totally

ordered with respect to an order relatigh

Definition 2.2 (Attribute) An attribute A is an identifier with an associated domdiom(A). If dom(A) is a categorical
(respectively, numeric) domain, then we say tHais a categorical(respectivelynumerig attribute We say thatd is

booleanif dom(A) = {¢, ¢(A)}, wherec(A) denotes an arbitrary fixed constant associatedl. to

Definition 2.3 (Tuple) Let I = A4,..., A,, be a set of attributes. #uplet on I is am-ple (vy,...,v;), wherev; €
dom(A4;), fori = 1,...,m. Thevalue of the attributed; in ¢, denoted by[4;], isv;, fori = 1,...,m. Thesize|t| of
teTis|{AeI|t[A] # e}

Definition 2.4 (Database)Let I be a set of attributes. Aatabasel’ on I is a collection of tuples oh. We say thafl” is

adatabase without nullg, for eacht € T, |¢t| = |I|. Otherwise we say th&t is adatabase with nulls



Name Year | Mathematics | Computer | Physics
Science

John 2001 A B €
Anastasia| 2001 € € €
Lawrence| 2001 A € €
Gabriel | 2001 B A A
John 2002 A B E
Anastasia| 2002 A C €
Lawrence| 2002 A A A
Gabriel | 2002 B A A

Figure 1: The example datababd; .

Definition 2.5 (Boolean database and sparse family of boolean databasdsgt I be a set of attributes, and létbe a
database ori. We say thafl’ is aboolean databas# every attributeA € I is boolean. Given a databagedefined on
a set of attributeg, by m we denote the tuple df having the largest size. A family of boolean databasessparse
if, forany T € S, |mr| is O(log|I|) wherel is the set of attributes which is defined upon. Given a famil§ of sparse

databases, we will cadiparse databaseach elemer’ € S.

Definition 2.6 (Active domain of an attribute) Let I be a set of attributes, led be an attribute i/, and letT" be a
database ofi. Theactive domain ofd in 7', denoted bydlom(A, T'), is the seft[A] | t € T} — {e}.

Thus, given an attributd and a databasE, with dom (A, T') we denote the set of the values assumed by the attribute
in the tuples ofl" (null value excluded), while bdom(A) we denote the set of all the possible values thaan assume
in any database (null value included). For exampldpifn(A) isNU{e}, whereN denotes the set of the integer numbers,

thendom(A, T') is always a subset &f of size at mosiT'|.

Definition 2.7 (Atomic condition) Let A be an attribute. Aatomic conditioron A is:

e an expression of the ford = u or A # u, whereA is a categorical attribute ande (dom(A) — {¢}) is a value

in the domain of4 distinct from thece value, or

e an expression of the form € [l,u] or A ¢ [l,u], whereA is a numeric attributel, v € (dom(A4) — {¢}) and

[ <.

Whenever numerical attributes are involved, the notatloa « (respectivelyA # u) can be used and is regarded as a

syntactic shortcut forl € [u, u] (respectivelyA ¢ [u, u).

Definition 2.8 (Active domain of an atomic condition) Given a set of attributes, an attributeA in 7, an atomic condi-

tion C4 on A, and a databasE on I, theactive domain o4 in T', denoted bydom(C4, T), is:



Mathematics | Computer | Physics | Geography
Science

Yes Yes € Yes

€ € € Yes
Yes € € Yes
Yes Yes Yes Yes
Yes Yes Yes Yes
Yes Yes € €
Yes Yes Yes €
Yes Yes Yes Yes

Figure 2: The example datababd,.

I PSS ST A ) T P Py
t1 € € € | ... € € 1 € € € € €
to 1| e|€e]|... € € € € € 1 € €
t3 e | 1| €e]... € € € € € 1 € €
tn_1 € € 1 € € € € € € € 1
tn € € € € 1 € € € € € 1

Figure 3: An example of sparse database

for Cy = (A = u), the sedom(A, T) N {u};

for Cy = (A # u), the sedom(A, T) — {u};

forCy = (A € [l,u]), the sedom(A,T) N {z € dom(A4) |l <z < u};

forCa = (A ¢ [I,u]), the sedom(A,T) — {z € dom(A) || <z < u}.

Definition 2.9 (Condition) A conditionC on a set of distinct attributed,, ..., A, is an expression of the forfi =
Cy A ... AN Cyp, where eachC; is an atomic condition om;, for eachi = 1,...,n. We denote byatt(C) the set
Aq,..., A,. Thesize|C| of C'isn.

Definition 2.10 (Satisfaction of a condition) Let I be a set of attributes, 18t be a database ah and lett be a tuple of
T. Let A be an attribute i, and letC 4, be an atomic condition oA. Then, we say thatsatisfiesC 4, writtent - C 4,

iff t{A] € dom(C4,T). LetC = C; A ... A C,, be a condition on a subset 6f we say that satisfies, writtent - C,



H UserlD ‘ Carrier ‘ PlcdCalls ‘ RcvdCalls | SpntMoney H

K Omnitel 80 40 $23.33
K Tim 10 5 $4.30
A Omnitel 110 81 $30.04
L Wind 90 20 $51.51
\Y Wind 95 112 $70.70
Y, Omnitel 1 0 $.05
G Wind 50 2 $25.50
G Omnitel 5 30 $1.25

Figure 4: The example databab®;

iff ¢ - C;, foreachi = 1,...,n. Otherwise we say thatdoes not satisf¢’, writtent t/ C. By T we denote the set of
tuples{t e T | t+ C}.

We are now able to define association rules and their semantics.

Definition 2.11 (Association rule) Let I be a set of attributes. Aassociation ruleon I is an expression of the form
B = H, whereB and H, calledbodyandheadof the rule respectively, are two conditions on the sets of attribljjes

andy respectively, such th#itC Ip, Iy C I, andIg NIy = (. Thesize| B = H| of the rule is|B| + |H]|.

Definition 2.12 (Trivial condition and trivial association rule) Let I be a set of attributes, and I&tbe a database on
1, and letC be a condition on a subset 6f We say that” is trivial if it contains at least one atomic conditiary such

thatT-, = T. Let B = H be an association rule dn We say thatB = H istrivial if B A H is trivial.

Following are examples of rules in the databBE83; shown in Figure 4:

Carrier = Omnitel = RcvdCalls € [50,100], (1)

RcvdCalls € [0,50] A PledCalls € [0,50] = Carrier = Wind, 2
PlcdCalls € [50,80] = SpntMoney € [$50, $100], (3)

SpntMoney € [$0,$100] = Carrier = Omnitel. (4)

Note that rule 4 is trivial. A database allowing nulls is shown in Figur®B(), whereas Figure 2 describes a boolean

databaseI)B;). Examples of allowed rules ddB,, are:

Mathematics = Yes = Physics = Yes A Computerscience = Yes, (5)

Geography = Yes =— Physics =Yes. (6)

When inducing association rules from databases in data mining applications, one is usually interested in obtaining rules

that describe knowledge “largely” valid in the given database. This idea is captured by several noitolisegfwhich



have been defined in the literature. In the following, we shall consider the most widely used indices, whose definitions

are given next.

Definition 2.13 (Indices) Let I be a set of attributes, 18t be a database ah and letB = H be an association rule on

I. Then:

1. thesupportof B = H in T, written sup(B = H, T), is 'T’fTAlH‘;

2. theconfidencef B = H in T, writtencenf(B = H,T), is ‘7‘1’;;“";

3. Let @ be a rational numbe) < 6 < 1, then thef-gain of B = H in T, written gaing(B = H,T), is

[ TBAu|—0:TB].
[T !

4. Let h be a natural numbeh, > 2. Then theh-laplaceof B = H in T, writtenlaplace, (B = H,T), is %

Let C be a condition ord. By analogy with the above definition, we define thgportof C in T, written sup(C, T, as
|Tc|

Support and confidence are classical indices employed in the data mining field to establish rules’ quality (see, e.g. [17]).
Intuitively, when a rule scores a high support, an evaluation algorithm may conclude that it is worth to further consider the
rule at hand, since there exist a significant fraction of the database tuples that satisfy the conjunction of the atoms in the
rule. Confidence shows to what extent a given rule is true within the database at hand. The gain index [7, 13] is employed
as a combined measure of support and confidence. Intuitively, it is desirable to have rules with both high confidence and
support. Indeed, gain can be seen as a combined measure of rules’ quality in terms of both support and confidence (note
that gain can be rewritten aging(R,T) = sup(R,T)(cnf(R,T) — 6)). The Laplace index [7] is inspired from the
statistical Laplace’s rule, and provides a measure of the probability for a new inserted tuple to satisfy the rule at hand.
Having defined association rules and associated indices (that, in different forms, measure the validity of an association
rule w.r.t. a database where it has been induced from), we are able to formally define next the association rule induction

problems.

Definition 2.14 (Association rule induction problem) Let I be a set of attributes, It be a database oh letk, 1 <
k < |I], be anatural number, and letd < s < 1, be arational number. Furthermore,get {sup, cnf,laplacer, gaing}.
The association rule induction probleffh T', p, k, s), also calledp-problem is as follows:ls there a non-trivial associa-

tion rule R such thaiR| > k andp(R,T) > s?

In general, we shall measure the complexity of association rule induction problems for the various index forms we have
defined above. As a special case, we shall also consider the complexity of the induction problems when the attribute set
I is assumed not to be part of the input, in which case we will talk aficed schema complexitf the association rule
induction problem.

Remarks.



1. In the literature it is usually assumed that, in answering an association rule induction problem, one looks for rules
that meet some criteria in terms of two or more indices [7]. Here we prefer to consider one index at a time. Indeed,
this allows to identify complexity sources; moreover, complexity measures for problems involving more than one

index can be obtained fairly easily from problems involving only one index.

2. Highestindices values can be easily obtained building ad hoc trivial rules. Thus, in the following, we will focus our
attention on non-trivial association rules. As an example, consider rule 4 above, regarding dBXBhas¢hich
is trivial, because of the conditidBpntMoney € [$0,$100] (the whole domain of the attributgpntMoney is

captured).

3. In the following, we shall study complexities of association rule induction by defining several suitatiton
problems. It can be objected that inducing association rules is an enumeration problem rather than a decision
problem. However, we observe that complexity of computational problems is studied usually by examining their
decision problem versions. Indeed, computational complexity theory has focused mainly on complexity of decision
problems [14, 21]. In any case, this approach allows us on one hand to state a reasonable form of lower bound over
the enumeration problem and, on the other hand, to single out the source of complexity characterizing the problems
at hand which is the necessary premise to devise algorithms solving the problem as efficiently as possible. In the

following, in Section 3, we shall briefly comment on complexity sources of rule induction problems.

Definition 2.15 (Domain Tailoring) Let I be a set of numerical attributes, and fébe a database oh Let A be an

attribute inZ, and letu be a value. Define

e lub(u, A,T) =min{v € dom(A4,T) | u < v}, and

e glb(u, A, T) =max{v € dom(A,T) | v < u}.
LetC = A € [I,u] (respectivelyC' = A ¢ [l, u]) be a nontrivial atomic condition such that| > 0. Define

bot(C,T) = A€ [lub(l,A,T),glb(u,A,T)]
(A ¢ [lub(l, A, T),glb(u, A, T)] respectively)
LetC = C;i A ... A C, be anontrivial condition such th§if| > 0. Define
bot(C,T) = bot(C1,T) A ... Abot(C,,T).

Proposition 2.16 Let I be a set of numerical attributes, I&tbe a database of, and letC be a nontrivial condition on

a subset of such thai7¢| > 0. ThenTo = Tyot(c,1)-

Proof. LetC = C; A ... A C,,. Simply observe thadom(C,T) = dom(bot(C,T),T). ]
Proposition 2.16 has the technically important consequence that we can restrict our attention to conditions and association
rules including only values from the input database. In this paper, we will refer to conditions and association rules of this

kind only. The same assumption holds for conditions defined on categorical attributes.



2.1 Complexity Classes

We assume the reader is familiar with basic concepts regarding computational complexity and, in particular, the com-
plexity classes P (the decision problems solved by polynomial-time bounded deterministic Turing madfimése
decision problems solved by polynomial-time bounded non-deterministic Turing machines) and L (the decision problems

solved by logspace-bounded deterministic Turing machines).

Definition 2.17 Let C' be a boolean circuit. Thaizeof C'is the total number of gates in it. Tliepthof C is the number
of gates in the longest path @\.

Definition 2.18 MAJORITY gates are unbounded fan-in logic gates (with binary input and output) that output 1 if and

only if more than a half of their inputs are non-zero.

Definition 2.19 A family {C;} of circuits, whereC; accepts strings of sizg is uniform if there exists a Turing machine
7 which on inputi produces the circuif;. {C;} is said to bdogspace unifornif 7 carries out its work usin@(log )

space.

Definition 2.20 DefineAC" (respectivelyT'C®) as the class of decision problems solved by logspace uniform families of
circuits of polynomial size and constant depth, with AND, OR, and NOT (respectively AND, OR, and MAJORITY) gates
of unbounded fan-in [1, 6, 22].

Definition 2.21 For anyk > 0, #AC) is the class of functiong : {0,1}* — N computed by depttk, polynomial
size logspace uniform families of circuits with, x-gates (the usual arithmetic sum and produdfjrhaving unbounded
fan-in, where the inputs to the circuit consistigfand1 — z; for each input bitz; and of the constant$ and1. Let
#AC = U, #ACY [1].

Note that#AC" circuits take the valuesand0 as inputs, which are considered as natural numbers.

Definition 2.22 GapAC° is the class of all functiong : {0,1}* — N that can be expressed as the difference of two
functions in#AC° [1, 5]. PAC" is the class of languagédsi | 3f € GapAC®, 2z € A < f(x) > 0} [1].

Definition 2.23 Let {C;} be a uniform family of boolean circuits, and |gfrn) andg(n) be functions from the integers
to the integers. We say that tparallel timeof {C;} is at mostf(n) if for all n the depth ofC,, is at mostf(n). We say

that thetotal workof C' is at mosty(n) if for all » > 0 the size ofC,, is at mosty(n).

Definition 2.24 DefinePT/WK(f(n), g(n)) to be the class of all languagésC {0, 1}* such that there is a uniform
family of circuits {C;} decidingL with O(f(n)) parallel time and)(g(n)) work. NC is the clas®PT /WK (log*, n*)
of all problems solvable in polylogarithmic parallel time with polynomial amount of total work. Forjany0, NC; is
the classPT/WK (log’ n, n*), that is, the subset afC in which the parallel time i€ (log” n); the free parametek

means that it is allowed any degree in the polynomial accounting for the total work.

The above defined classes are of practical relevance since they identify with precision many problems related to simple
arithmetic calculations (e.g#AC"); furthermore, these classes enclose problems with highly parallelizable algorithmic

structure. For further details, see [25].



3 Related work and contributions

As far as we know, some computational complexity results pertaining to association rules were presented in [15, 19, 20,
26, 27, 8]. We briefly survey the results presented in these works and then pinpoint relationships with this paper. In [15],
is stated theNP-completeness of the problefh, T', sup, k, s) on boolean databases, therein cali¢d relations. This is

done through reducing the Balanced Bipartite Clique problem to it. Moreover, it is stat¢gdtirmardness of the problem

of counting the number of association rules scoring enough support on a boolean database. In [26] the authors defined the
QARMINE(D) decision problem as a sextugdle 7', L, 7, s, ¢), where[ is a set of attributed] is a quantitative database

onl, L C I, is a pattern ovef, ands, ¢ are two real numbers such thak s < ¢ < 1. They defined gatternover a

set of attributesd, . . ., A,,, as a condition of the form; € [l1,u1] A ... A Ay € [ln, um] Wherel; < u; (1 < i < m)

are two distinct real numbers. The answer to the instdic€, L, w.., s, c) of the problem QARMINE(D) is “yes” iff

there exists a patterry on a subset of,, such thatup(m; = «.,T) > s andenf(m = 7., T) > ¢. The QARMINE(D)

problem has been proved to be NP-complete under the general complexity measure, while it is polynomial time solvable
under the fixed schema complexity measure. In [27] a boolean dat&lms£is interpreted as the encoding of a bipartite
graphG = (U,V, E). HereU is the set of itemd; there is a node:; in V for each tuplet of T', and there is an edge

(A,n:) in E for each tuple of T and for each attributel of I such that[A] # e. The authors argued that the problem of
enumerating all boolean association rules with high support corresponds to the task of enumerating all the bipartite cliques
(a bipartite clique is a complete bipartite subgraph) of the formT,., with I, C U andT,. C V, subject to the constraint
that|T.| is greater than a specified threshold. Then, they recall the complexity of some decision problems for maximal
bipartite cliques, and the complexity of the best algorithms for the enumeration of all the maximal bipartite cliques of a
bipartite graph. In [19] and [20], an NP-hardness result is stated regarding the induction of boolean association rules (or,
in general, otonditiong having an optimaéntropyor chi-square although entropy and chi-square are indices that we do

not consider in this work. The authors of [8] dealt with the complexity of computing all the maximal frequent sets and all
the minimal infrequent sets in a boolean database. Given a set of boolean attfitaitztabasé’ on I, and a threshold

t (1 <t < |T), asubsetX of I is said to befrequent if |T¢(x)| > t, while is said to bénfrequent if |T¢(x)| < t,
whereC(X') denotes the conditiof,. .y Y = ¢(Y). Let M; andZ; denote the family of all the maximal frequent sets

and minimal infrequent sets respectively. It is proved thak; i# (), then|M;| < (|T| — ¢ + 1)|Z;|, and, hence, that the
complexity of generatingU; U Z, is equivalent to that of the transversal hypergraph problem (see [10] for the definition

of this problem). As the latter problem is known to be solvable in incremental quasi-polynomial time [12], then the same
result holds for the joint generation of maximal frequent and minimal infrequent sets: fokeglchM; U 7|, k sets
belonging toM; U Z; can be generated ipoly(|1],|T|) + k°U°8%) time. We summarize next the contribution of this

paper. Relationships between our contribution and the abovementioned works will be outlined.

e Consider categorical and quantitative databases without nulls; in this setting, we prove that the pfoblemp, k, s)
is NP-complete (Theorem 4.2). From the NP-completeness of the prqléfnsup, k, s) on boolean databases
stated in [15] there follows the NP-completeness of the same problem on databases with nulls. We note that

databases without nulls form a subset of databases with nulls, thus the result in [15] does not immediately apply.

10



Furthermore, in [26] is stated the NP-completeness of the problem of inducing association rules with high support
(and high confidence) on quantitative databases without nulls; however, the proof is carried out under the artificial
assumption that each condition within an association rule must involve an interval containing at least two distinct

numbers. We also observe that in the QARMINE(D) problem the head of the rule is an input parameter.

e We show that, under the general complexity measure, the proflem cnf, k, s) is NP-complete on databases

with nulls (Theorem 4.11), while it is ifC° (Theorem 4.7), and hence in P, when databases without nulls are
considered. The analysis of the computational complexity of this problem has been, so far, missing in the literature.
Furthermore, in [26] the problem of inducing quantitative association rules on databases without nulls with simulta-
neously greater confidence and support than two given thresholds is proven to be NP-complete. Here we prove that
the problem of inducing quantitative association rules on databases without nulls with a confidence greater than a
given threshold is in P. Hence, we can conclude that in the problem dealt with in [26], the additional source of com-
plexity arising from the presence of a constraint on the confidence value is hidden by the contemporary presence of

the same constraint on the support value.

e We prove that(, T, gaing, k, s) and (I, T, laplacey, k, s) are NP-complete when both databases with nulls and

databases without nulls are considered (Theorem 4.13 and Corollary 4.14).

e We single out an interesting subset of boolean databases, spbesk for which the problem(I, T, p, k, s), p €
{sup, enf, gaing, laplacey }, is solvable in logarithmic space under the general complexity measure (Theorems 5.1
and 5.2).

e We strengthen a result presented in [26], showing that the profdlem p, k, s), p € {sup, enf, gaing, laplacep },
is solvable in logarithmic space under the fixed schema complexity measure both on databases with nulls and

databases without nulls (Theorems 6.1 and 6.2).

e Finally, we prove complexity results for some interesting special cases of the general rule induction problem,

namely:
— (I, T, sup, k,s) wheres € (0,1) is a fixed constant and is a database with nulls is NP-complete (Theorem
7.1);
— (I, T, sup, k, s) wherek is a fixed constant arfl is boolean database isTC° (Theorem 7.4);
— (I, T, sup, k, s) where[s|T|] is a fixed constant anl is boolean database isi"C° (Theorem 7.7);
— (I, T, sup, k, s) wherek and[s|T|] are two fixed constants arfdis a boolean database isAC) (Theorem

7.8).

We recall that in [27] is proved that the decision problems associated to the induction of boolean association rules
B = H suchthaiB = H| > k (problem A) orsup(B = H,T) > k (problem B) or|B = H| + sup(B =

H,T) > k (problem C), wheré: is a constant, are polynomial time solvable. While it is not immediately obvious
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Index Database| Constraint Complexity Reference
Type

sup,gaing,laplacey, no nulls NP-complete Th. 4.2, 4.13
enf no nulls TC? Th. 4.7
all with nulls NP-complete| Cor. 4.4, Th. 4.11, Cor. 4.14
all sparse L Th.5.1,5.2
all any |1| fixed L Th. 6.1,6.2
sup with nulls s fixed NP-complete Th. 7.1
sup boolean k fixed T Th. 7.4
sup boolean s|T| fixed TC? Th. 7.7
sup boolean | s|T| andk fixed ACY Th. 7.8

Figure 5: Summary of complexity results faF, T, p, &, s).

to compare these results with ours, we note that, in any case, generally speaking, the results presented here seem to

state stronger complexity bounds.

In conclusion, we recall that problems belonging to classes@s TC® andL are very efficiently parallelizable (indeed
ACY C TC® C NC; C L C NCy), so that the algorithm design effort could be addressed accordingly. These complexity

results are summarized in Table 5. Before proceeding, it is worth briefly commenting on the results presented in the table:

e Under the general complexity measure, all the problems consideréacemplete in the presence of null values;
therefore, dealing with databases where null appear makes, “per se” the task of rule induction very demanding from

the computational point of view;

e Under the general complexity measure, the problénT’, cnf, k, s) becomes tractable when databases without
nulls are considered, while the other problems remain intractable; this means that looking for rules with high-
confidence is easier than generating rules scoring high values for the other indexes; the reason here (as implicitly
shown in the proof of Lemma 4.5 and Theorem 4.7) is that well-suited rules can be easily enumerated using a

polynomial method;

¢ If we impose a bound on the length of the tuples appearing in the database or a bound on the number of attributes
on which a database is defined, then all the problems become highly parallelizable; intuitively speaking, this kind
of result can be understood if one considers that the number of candidate rules is polynomial and different rules can

be generated independently one from another, when such bounds are imposed,;

e The problem(I, T sup, k, s) on databases with nulls becomes highly parallelizable, when dithes|T| is held

fixed; in this case, the same considerations drawn for the item above apply.
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| [n]elnln|n]6)

togwoy | OO [ 11|11
] 2 topway | Ol L[ 10|11

6 3 towsy | O L[ 11|01
tiowwsy || O L[ 2 [ 1|10

G S 4 troswsy || 1] O] O [ 1] 1]1
topway | 11O 10|11

tloswsy | 1O 11|01

togway | 1|1 ]0] 0|11

toawsy | 1|1 [ 1]0]0]1

toswer | 1| 1] 1] 200

Figure 6: An example of the reduction used in Theorem 4.2

4 General complexity results

Here we investigate the complexity of solvig 7', p, k, s) whenI, T, k ands are inputs.

4.1 Support-problems

Here, we prove that, when support is used as the reference index, the association rule mining problem is NP-complete
both in the presence and in the absence of nulls.

In [15] (see Theorem 4) is stated the NP-completeness of the prdBléf sup, k, s) whenT is a boolean database,
therein called/1-relation From this result immediately follows the NP-completeness of the probleffi sup, k, s) on
databases with nulls. The following theorem states that the proflem sup, k, s) remains intractable even if we restrict
our attention to databases without nulls (we note that databases without nulls form a subset of the most general case, those
of databases with nulls). In particular, the next result, extends those presented in [26], that applies only to numerical
databases without nulls with conditions on intervals containing at least two distinct numbers. Furthermore, Theorem
4.2 can be quite immediately extended to prove the NP-completeness of the general case, as stated by the subsequent

Corollary 4.4 which is presented below.

Proposition 4.1 Consider the probler®® = (I, T, sup, k, s). If there is a ruleB = H that is a solution forP, then for
eachk’, 1 < k' <k, there is aruleB’ = H’ of sizek’ such thatsup(B’ = H',T) > s.

Proof. Given a conditiorC' and a databasg, such thasup(C,T) > s, simply note that it is easy to build a conditict
such thataitt(C’) C att(C) and|T¢/| > |T¢| holds. O
Theorem 4.2 Given a databas& without nulls, the problenil, T, sup, k, s) is NP-complete.

Proof of Theorem 4.2. (Hardnes$ The proof is by reduction of the proble@LIQUE, which is well-known to be NP-

complete [14]. LetiZ = (V, E) be an undirected graph, whére= {vy,...,v,} is asetof nodes, anl = {ej,...,en}
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is a set of edges; = {vp,,vq, }, Pi,qi € {1,...,n}, fori =1,...,m. Leth be an integer. ThE€LIQUE problem is:
Does there exist iix a complete subgraph (clique) of size at leas? W.l.0.g. suppose the gragh is connected. We

build an instancél<!?, T4 sup, k, s) as follows (an example of this reduction is reported in Figure 6):

e let 7€ be the set consisting of the attributBs. . ., I,,, such thatl; represents the node of G, for eachj =

1,....n;

e let 7 be the database di'? consisting of a tuple,,, for eachi = 1,...,m, such that.,[I;] = 0if v; € e;, and

te,[1;] = 1 otherwise (so that,, encodes the edgs of G).
o letk ben — h;

e lets be

h(h—1)
2m

Next, we prove tha€ has a clique of sizé iff (1¢9, T sup, k, s) is a YES instance.

The following Claim holds.

Claim 4.3 LetI; € I°9,letC’ = (I; = 0), and letC" be a nontrivial condition defined on a subset & — {;}. Then
TS 0| < —|C" A CY).

Proof of Claim 4.3. We distinguish two cases:
1. C” contains a conditiotf, = 0 (1 < a < n). Then, clearly| T, .| < 1.

2. ¢ contains only conditions of the forth, = 1 (1 < a < n). Letw; be the node corresponding to the attribiite
Observe that

TS |l = {v €V : {vj,0} € B} = [{va € V : {vj,v.} € EAL, € att(C")}| =

={va €V : {vj,v.} € EANI, & att(C")} <n—|C"AC"|.

]
We can now resume the proof of the theorefa:) Let C = {v,,,...,v,, } be a clique of sizé: in G. Consider the
condition
BAH = N =1
ij(Vfc)

Sinced is connected, for each 1 < j < n, there is at least a tuptesuch that[/;] = 0, thusB A H is not trivial. By

definition of clique, there aré(}g;” edges of7 connecting nodes i6¢'. Therefore, the cardinality of the set

T = {t{w-m,vw} e Tca [1<xz<y<h}

clg
equals™™1) SinceT” C T§?,,, thensup(B = H,T°) = % > hhl)

(«=) By Proposition 4.1, if(7¢'¢, T sup, n — h, W”‘”) is a YES instance then there is a nontrivial rife= H

2m
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of sizen — h such thalTh? ;| > "1 'w..0.g. assumé > 4. Note that conditions of the forrfy € [0, 1] are trivial.

Suppose that there is a conditibn= 0 occurring inB = H, then, by Claim 4.3,

h(h—1)

T5iul < n—IBAH|=h< ==

Hence only conditions of the fordy;, = 1 can appear iB = H. LetI°Y — att(BA H) = {I,,,...,I,, }. In order to

be|T5?,| > ML el contains, at least, the set

{t{vrwvry} S Tela ‘ 1<z<y< h},

i.e. the nodes,,,...,v,, forma clique ofG with sizeh.

(MembershipA certificate for(I, T, sup, k, s) is given by an association rule¢ = H defined on a subset éf This can
be checked in polynomial time by verifying thBt= H is not trivial, that| B = H| > k, and thatsup(B = H,T) > s.
O

Corollary 4.4 Given a databas& with nulls, the complexity off, T', sup, k, s) is NP-complete.

Proof of Corollary 4.4. Hardness is proved by means of Theorem 4.2, since databases with nulls are a superset of

databases without nulls. Membership in NP is straightforward. |

4.2 Confidence-problems for databases without nulls

It is generally believed that when both support and confidence are measured, the task of filtering out those rules with low
confidence from a set of rules having support above a certain threshold is far easier to compute [3, 27]. We prove that
the problem of finding association rules with high confidence on databases without nulls is a tractable subcase, while the

same problem on databases with nulls remains computationally demanding.

Lemma 4.5 Let I be a set of attributes, |6f’ be a database without nulls afh and lets, 0 < s < 1, be a rational
number. Then there is a nontrivial association rile= H on I such thatenf(B = H,T) > s iff there is an attribute

Ji € I, avalueuy € dom(Jy,T), and a tuplet € T, such that the rule

N\ =t | = (Ju #un)

Je(I—{Jn})
is nontrivial and has a confidence greater than or equad.to

Proof. (=) Let
(B:>H):(Cl/\.../\Ch:ChH/\.../\Ck)

be a nontrivial rule such that; is an atomic condition, for each= 1,... %k, andenf(B = H,T) > s. Let Jy be

att(Cy), and letuy € (dom(Jy,T) — dom(Cy,T)). SinceCy, is not trivial, u g exists. Consider the rule

(B/ ﬁHl) = (Cl AN ANCr_1 = (JH %UH))

15



Figure 7: The example databab®,

Then, from|Ts ap/| > |Tear| @and|Ts| < |Ts|, it follows that

Tenm| _ |T
cnfﬁ7:¢1T7T):| ] | BAH|:cnfﬂ3:»H}T)
75| Ts|

Let/ —{Jg}=Ji,...,Jn_1. Foreach € T, we denote by (¢) the condition
(Jy =t[ ) Ao oA (Tt = E[Tn-1]).
Let T be a maximal subset dfg, such that for na,t’ € 7" it holds that
(L] =[] A A (ETn1] = [ Tn-1])-

We show that for somee T” it holds that% > s. Assume by way of contradiction, for eack 77, Teynl <s

[Te
Then

s P P
enf(B' = H',T) = |"wer Tewrnm| _ " yer|Tewnm| < mrer 8| Tean| _ s
’ | et Tc(t”)| treT! ‘Tc(t”)| 1 eT! |TC(t”)| ’

which contradicts the fact thatf (B’ = H’,T) > s. Then there is someé € 7" such that% > s. Hence
t

C(t) = H'is the required rule. Indeed,¢) = H' is not trivial sinceB = H is not trivial: note that for each,
1 <4 <k—1,we have thatlom(J; = t[J;],T) C dom(C;, T) and, furthermoredom(Jy # uy) C dom(Cy, T).

(«) Straightforward. 5

Example 4.6 To illustrate Lemma 4.5, consider the simple example databBd3g in Figure 7. Consider the rulg
Acl,2]=Be]l,2]
for which we havern f(R,DB4) = 0.75. The element, = 3 is such that
u € (dom(B,DB,) — dom(B € [1,2],DBy,))

By Lemma 4.5, the sef of rules of the form

A=z=B+#3
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for € dom(A,DB,), contains at least a rulB’ such thatn f(R',DB,4) > 0.75. Indeed,S includes the following

rules
A=1 = B#3, (7
A=2 = B#3, (8)
A=3 = B#3, )

among which both rule 7 and rule 9 score a confidence value equal to

An immediate consequence of Lemma 4.5 is that the prolilerfi, en f, k, s) on databases without nulls is polynomial-
time decidable. Indeed, it suffices to guess all the conditions of the form illustrated above, whose number is polynomially
bounded, and then check if at least one of these rules scores enough confidence on the input database. Nevertheless, we

are able to provide a tighter bound on the complexity of this problem, as stated by the following theorem.

Theorem 4.7 Given a databas@ without nulls, the problenil, T, en f, k, s) is in TCP.

Proof. LetI = {I,...,I,} be a set of attributes, afll = {¢1,...,t,} be a database without nulls dn In the rest

of the proof, whenever we use the subscripts, j, j/, j” andh, we assume that < i,7/ < m, 1 < j,5',5" < n,
andl < h < [log, n]. LetU(n) denote the sef0,1,...,n — 1} of natural numbers. Let; : dom(Z;,T) — U(n) an
injective function. Givery € U(n), we denote by, (y) the h-th bit of the binary encoding af. W.l.0.g., we can assume
that7" is encoded as®a x n x [log, n] matrixen(T) of bits, whose elements, ; ;, are such that; ; , = by (e;(t;[1:])).
Now, we build a logspace uniform famil{50m,n}1 of circuits of polynomial size and constant depth, with AND, OR, and
MAJORITY gates of unbounded fan-in. The circdit, ,, takes as inpuén(7") and will output 1 iff (I, T, cnf, k, s) is a
YES instance. A circuit’,, ,, is constituted of a set oFC° circuits R(i,j,1),...,R(i,j,n). Acircuit R(i, j, ;') takes

ininputen(T") and outputs 1 iff the rule; ; v = (x:,; = (I; # t;/[1;])) scores enough confidence, where

Xij = /\ ([i’ = tj[fv'/])

i'e{1,...,i—1,i+1,...,m}

Thus, each circuiR(i, 4, j') is introduced in order to guess one of the rules of the form stated by Lemma 4.5. In particular,
i andj’ identify the attributel; and the value; [I;] appearing in head of the rule, respectively, whil@entifies the
valuest;[I;/] (i" # i) appearing in the body of the rule. The output®f ,, is obtained by wiring the output of the circuits
R(i, 7, ') through an OR gate. To conclude the proof, we will have to show that the cif(itg, j') are inTC’. In the

following we denote by, ; ;. the rulex; ; = I; = (t;/[1;]).

Claim 4.8 For each conditiony; ; (rulex; ; ;/, respectively) there is a familfcount (X j)mn} ({count(X; ; j)mn},

respectively) ot ACP circuits computingTy,

(|Tf,i’j’j, |, respectively) over any inpai (7).

INote that in this theorem and in the following, by a little abuse of notation, and for simplicity, we denote a circuit family recognizing inputs in the

form of am x n x [log, n] boolean matrix by using the subscript n instead of the usual subscript wherei denotes the input size
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Proof. Consider an atomic condition of the forfiy = ¢;[I;;] and a generic tuple;» of T. We defineS(j,, j")

as the#AC? circuit having 2[log, n] binary inputs,z; 1, . . . s Tt 4 Tlog, n] (the encoding of;[Ii/] in en(T')), and

T ji 15+ -5 Ty i Nlog, o] (the encoding of ;. [I;:] in en(T')), and computing the following function:
[logy n]
IT @ign x @i gon+ Q=i jn) x (L =i jon) .
h=1

It is immediate to verify that the circuif(j,4', ;") outputsl if t;»[I;] = t;[I], i.e. if t;» = (Iy =t;[1y]), and0

otherwise. Thus, the circui(j, i, 7)) computing the function
S(j, l,j”) X ...xS(j,1— 1,j”) X S(j,z' + 1,j”) X ... X S(j,m,j”)

outputsl if ¢, F x; ;, and0 otherwise. To conclude, we can build a ciratitnt (x; ;)m, n s
n
> QG 5"
j”zl

and a circuitcount(X; ; ;+ )m.n @S

n

> (@G, 5") x S(',1,5")) -

j"=1
O

Claim 4.9 For each ruley; ; ;» there is a constant-depth polynomial size uniform farfi#(:, 7, j'),m . } of circuits of
unbounded fan-in AND, OR and MAJORITY gates, such®tatj, j')., » outputsl iff cnf(x; ., T) > s, when the
input database has size x n.
Proof. We recall thats, 0 < s < 1, is a rational number. So, there are two natural numbersdb, b > «, such that
s = a/b. W.Lo.g., we can assume thais encoded as a pair of natural numbers of the fgumbd), with o’ = b — a.
Consider the function

g4, Tos) = (d'[Ty,,

taking values over integers. A%, | = [Ty, | — |Tx, , |, we have thatn f(xi;;, T) > s iff f(xi;;.T,s) > 0.

+ 1) - b‘TE,M/|
We recall the following result [5]: for each integ@¥ there is a log-time uniformAC® circuit, which computesV,
when the binary representation of is given in input. Call this circuibumber(N). Sincea’ andb are integers, we

can build two#AC" circuits computing the functions [T, |

andb|Tx, ; |, connectingrumber(a’) to count(Xi,;)m.,n
andnumber (b) to count(X; ; j)m,.n- By Definition 2.22, the functiorf (x; ; ;-, T’ s) is in the clasgiapAC?, and the
language

{Xija | enf(xijg,T) = s}
is in the classPAC® which coincides withT'C° under log-space uniformity [1, 5]. Thus, there is a constant-depth
polynomial size uniform family{C(i, 4, j')m.» } Of circuits of unbounded fan-in AND, OR and MAJORITY gates, such
thatR(4, j, j')m,» outputs 1 iffsup(x; ;. T) > s, when the input database has size< n. O
The number of such circuit&(i, j, j') is mn?, which is polynomial inm x n, henceC,, ,, has constant depth and
polynomial size as well. We observe tiGit, ,, may be easily generated using logarithmic space. Thus, this proves that

the problem(I, T, enf, k, s) on databases without nulls isiC° under the general complexity measure. O
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4.3 Confidence-problems for databases with nulls

Proposition 4.10 Consider the set of problen8 = {{I,T,p,k,s)} , wherep € {cnf, gaing,laplacey,}. If there is
an association ruleB = H that is a solution for a problen® € P, then the ruleB’ = H' also solvesP, where
B'ANH' =BAHandH'|=1.

Proof. The proof is straightforward and thus omitted. O

Theorem 4.11 Given a databas@&’ with nulls, the complexity aff, T, cnf, k, s) is NP-complete.
Proof of Theorem 4.11. (Hardnes$ The proof, as in Theorem 4.2, is by reduction@fiQUE. LetG = (V, E) be an

undirected graph, with set of nod&s= {v1,...,v,} and set of edge& = {e; = {vp,, v, },---sm = {Vp,., Vg, } }-

Let h be an integer. We build an instan@&'?, 7' cnf, k, s) as follows.

o Let/% bel’ U{l,1}, wherel’ = {I1,...,I,}. I; will represents the node; of G, for j = 1,...,n, andl, 1

is a new attribute representing a dummy nogdes;

o LetT? = T"UT”, whereI” includes the tuple&,, andt. , wheret,, [I;] = e (respectivelyt, [I;] =€) if v; € e;,
andt,, [I;] = 1 (respectivelyt, [I;] = 1) otherwise, fori = 1,...,m, j = 1,...,n + 1, (the tuplest., andt;,
both denote the edgg of G). FurthermoreZ” includes the tuples,,, wheret,, [I;] = € if i = j, andt,,[[;] = 1

otherwise, fori =1,...,n+1,j=1,...,n+ 1.
o letk=n—-h-+1,

2
o Lets = h?—ﬂ

See Figure 7 for an example of this reduction. We have the following Claim.
Claim 4.12 LetC be a condition on a subset &f, then
1. |15 < 2(*)9"), and

2. T4 <n+1-|C|.
Proof of Claim 4.12. Point 1 follows by considering that’ contains two tuples for each edge@f i.e. T’ contains
at most2(g) tuples. A condition containing an atomic condition on a generic attribytevherel < j < n + 1 is not
satisfied by the set of tuplds,, ., |v € V}U{t, , [v € V'}. In general, a condition of lengfron 7" satisfies just a subset
of T” representing a subgraph Gfof sizen — . As for point 2, consider that a condition containing an atomic condition
on a generic attributé;, wherel < j < n + 1 is not satisfied by the tuplg,;. In general, a condition of lengthcan

match onlyn + 1 — [ tuples ofT". O

Next, we prove that there is a clique of sizan G iff (I°!9, T enf, k, s)isa YES instance(=) LetC = {v,,,..., v, }
be a clique of sizé in G. Consider the conditiof3 = (/\Uje(vfc)(lj = 1)) such that B| = n — h. By definition of

clique, there exisf“@—’” edges ofZ connecting nodes i@'. Now,
Tl = {t{% oyt oy | 12 <y < h}
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Thus,|Ty| = 2("JP) = h(h — 1), whereagTy| = n+1—|B| = h+1. Hence|T5¢| = h(h — 1)+ (h+1) = h> 41,
and

clq
|TB/\(In+1=1)‘ g1 h2

3] =
|75

_ clqy —
Cnf(B = (In+1 - 1)7T q) - |Tgle| T R+

(<) By Proposition 4.10, if1¢'¢, T cnf n — h + 1, h?—L) is a YES instance, then there is a rite= B = H on
I, where|H| = 1, such thatB| > n — h .

Note that, if R would contain an atomic condition of the forfp # 1, cnf(R,T¢9) would be 0. Hence, only atomic
conditions of the forn?; = 1 can appear irR.

The content ofl” implies that there is no association rule having confidenom 7</¢. Furthermore, we have that

cl
|Tglq| > h%+1, otherwise the ratiélTTi%Hll would not bé greater than or equal tﬁﬁ—l Two cases have to be considered:
B

1. T ¢ att(B);
2. In+1 S att(B).

(Case ) Assume thaatt(B) C I'. Then|T§lq| > h? + 1 implies that|B| < n — h, and we have already noticed that
|B| > n — h. Thus|B| = n — h and|T§?| = h® + 1. LetI’ — att(B) = {I,,,...,1,,}. Since|B| = n — h, then

|T7| = h + 1, whereas, in order to b&y;| = h(h — 1) itis necessary that

Ty = {t{vmvry}atf{vrx,vry} [1<z<y< k} ,

i.e. the nodes,,,...,v,, forma clique ofG having sizeh.
(Case 3 Suppose thaB = B’ A (I,,11 = 1). Then|T54| > h2 4 1 implies that| B’| < n — h — 1, and we have already
noticed thaiB| > n — h,i.e.|B’| > n —h — 1. Thus|B’| = n — h — 1 and (by recalling Proposition 4.12)

n—|

h2+1<|T§lq|<2< )

B/
|)+(n+1—|B’|)=h2+2h+2.

We can show that there is no tugle 7" such that ¥ H andt - B. Assume, by contradiction, that such a tuple 7’
exists. ThedTgﬁH\ < |Tg| -2+ |Tg| — 1. This implies that the confidence of the association Bile> H cannot be
greater than or equal tﬁ)z%, since, for eaclh,

\Tf;q|—3<(h2+2h+2)—3< h?
|Tgel T h*+2h+2 h? +1

Indeed, simply note that, assumihg> 1 we have

(R? +2h +2) —3 _ h? N

h2 +2h +2 h?2+1
h? (h? +2h +2) -3
R24+1  h2+2h+2
2h% —2h+1 > 0.

0=

m—1

“Consider the inequality. 5 >
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t{vy s} el e | 1111 1

tf{m“} elel|1]1]1 1

[ZEIRT! € 1 € 1 1 1

tf{vl’vs} € 1 € 1 1 1

Loy ,04} € 1 1 € 1 1

/
t{’vl,v4} € 1 1 € 1 1

t{v%v:‘} 1 € € 1 1 1

1 2 trogwgy || 1| €l e[ 1] 1] 1
5 t{vg,v4} 1 € 1 € 1 1
t 1 le|1]e]|l 1
{v2,v4}
3 4

tivs 04} 1 1 € € 1 1

tI{U3,v4} 1 1 € € 1 1

t{vg,05) 1 1 € 1 € 1

/
t{7)3’1)5} 1 1 € 1 € 1

tvy,v5} 1 1 1 € € 1

/
t{v4,v5} 1 1 1 € € 1

to, el1 11|11
b 1lel1|1|1|1
tos 1{1]e|1|1]1
to, 111 ]|el|1]1
tos Tl1]|1]|1]el1

Figure 8: An example of the reduction used in Theorem 4.11

Thus, H is such thalTy, ;| = T = |Th/| = |Th ry|. Since|TE? > h? + 1 and, by Fact 4.12, we know that
764 ;| < h? +1 (note that B’ A H| = n — h), it follows that| T2 | = [T = h? + 1. LetI’ — att(B A H) =
{L,,,..., I} Hence

Ty = {t{% ,%},t’{% ) [1<z<y< h} ,
i.e., the nodes,, ..., v,, form a clique ofG having sizeh.

(Membership A certificate of membership in NP is given by an association Bile> H on I. This can be checked in

polynomial time by verifying thaB = H is nontrivial,| B A H| > k, andenf(B = H,T) > s. O

4.4 Gain- and Laplace-problems

Despite their syntactical similarity to confidence, the laplace and the gain index “behave” more similarly to support than to

|Tam|+1

confidence. For instance, consider a rBle>- H and a databasE. Theh-laplace index; ol reaches its maximum
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value whenTpap| = |Ts|. Assume this is indeed the case, then,lfgflace, (B = H,T) > s to hold, it must be the

case thatTgam| > ”13_‘31. Thus, if we search for a rule scoring a high valuédaplace, that is wher approacheg, it

is the case thafl's ;7| Mmust approach teo and consequently thaup(B = H,T) must approach, or, in other words,
that the rule must simultaneously score a higlaplace value and a high support value. This argument is exploited within

the proof of the following Theorem.

Theorem 4.13 Let T be a database without nulls. Then the complexitylof, p, k, s), with p € {gaing, laplacey}, is

NP-complete.

Proof of Theorem 4.13.As for the hardness part of the proof, we follow the same line of reasoning as in Theorem 4.11,
using a reduction o€LIQUE. LetG = (V, E) be an undirected graph, consisting of a set of nddes {vy,...,v,}

and of a set of edgeR = {e1 = {vp,,vq,},.-.,em = {vp,., v, }}, and lety) be an integer. We build an instance
(I, T gaing, k, s) ({17, T, laplacey, k, s) respectively as in Theorem 4.11, but in this cas@?, 77, k ands

are constructed this way:

e [°4 is the set of attribute$;, ... 1, I,,+1, wherel; denotes the node; of G (j = 1,...,n) and I, is an

additional attribute;

e T°¢ includes the tuples.,,t,

€i

st. te,[I;] = t,.[I;] = 0if v; € e;, and1 otherwise, where,., andt,, both
denote the edge; of G, for eachi = 1, ..., m. Furthermore] !¢ contains the tupley, s.t. to[Z;] = 0, for each

j=1,...,n+1;
e Lissetton —y +1;

o sis set tol=0v¥=1) (w(w_”“ respectivelg.

2m+1 Y(W—1)+h
(Membership The membership of the problem NP can be proven following a proof similar of that of Theorem 42.
Corollary 4.14 LetT be a database with nulls. Then the complexitylofl, p, k, s), wherep € {gaing, laplacey}, is
NP-complete.

Proof of Corollary 4.14. Hardness is proved by Theorem 4.13. Membership in NP is immediate. a
This closes the complexity analysis of the general association rules induction problems. In the following sections we shall

analyze several interesting special cases thereof.

5 Sparse databases

There are many real world applications characterized by sparse databases. As an example, consider a database of transac-
tions of a large store constructed for basket analysis purposes, where we have a large set of items (attributes), but a small
set thereof involved in each single transaction (tuples). For databases showing this property, complexity figures are quite

different from what we have seen above for the general case.
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Input: a set of attributeg, a sparse databa%g an integelk, a rationals

begin
for :=1to |T| do
if [t;] > Kk then
for guess :=1to 2%! — 1 do
if guess has exactly bits set tol then begin
count :=0;
for j:=1to |T| do
if SATISFIES(;, guess, t;) then count := count + 1,
if count > s|T| then return “yes”;
end,
return “no”;
end.

function SATISFIES(, guess, u) : boolean
begin
pi=1
for ¢:=1to|I| do
if u[Aq] = ¢(Aq) then begin
if guess[p] = 1 and v[A4] = € then return false;
p=p+1
end;
return true ;
end, { SATISFIES}

Figure 9: The algorithm of Theorem 5.1

Theorem 5.1 LetT be a sparse database. Then the complexity/ of’, sup, k, s) is in L.

Proof of Theorem 5.1.We build a Turing Machin@ employingO(log(max{|I|, |T|})) space, which decid&s, T, sup,

k,s). LetT = {t1,...,tm}, and letl = {Ay,..., A,}. Letguess be a counter. Lejuess[p] denote the value of the

p-th bit of guess, 1 < p < [log,(guess)]. The algorithm implemented 1 is depicted in Figure 97 works as follows:

each tuple; is considered, using the counterand only those conditions which can satisfiedtpgre considered. It is

not necessary to represent each guessed condition explicitly; the couateris employed instead: theth bit of guess

tells whether the-th non null attribute value occurring t belongs to the current guessed condition or not. Each guessed
condition is then tested on each transactipaf 7', using the countef. The counterount takes into account the number

of tuples satisfying the current guessed condition. It is straightforward to note that the space employed corresponds to the
space needed to store the variahleg count, p, ¢ andguess. On the assumption thét is sparsej, j andcount need

O(log |T|) space, wheregs g andguess needO(log |I|) space. Finally, verifying whetheress has at least bits set

to 1 can be easily done in logarithmic space. a

Theorem 5.2 LetT be a sparse database. Then the complexity o', p, k, s), wherep € {enf, gaing, laplacep, } is in
L.

Proof of Theorem 5.2. The proof follows the same line of reasoning as Theorem 5.1. In this case, two disjoint current
conditions are needed (which represent the body and the head of the current association rule, respectively), and some

further auxiliary logspace counters. a
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6 Fixed schema complexity

In this section we improve the result reported in [26], which states the polynomial-time solvability of the association rule
mining problem under the fixed schema complexity measure. For the sake of simplicity, we shall consider only the case

of numerical attributes. The same results can be shown, however, using analogous proofs lines, in the other cases.

Theorem 6.1 Let I be a set of numerical attributes. Then the fixed schema complexity of the prdblEmsup, k, s) is
inL.

Proof of Theorem 6.1. (Sketch Let n = |I], and letm = |T'|. We can build a Turing Machin® employingO(log m)
space, which solved, T, sup, k, s). T uses2n pointersz, p, to 2n tuples ofT’, of sizeO(log m) each, an@n bits o,

andi;, for eachj = 1,...,n. Anarrangemenbf 7 is a4n-tuple

(pllquibv"-aplnapZaola"'aon;ila-”»in) € {L"'am}Qn X {0’1}271

Let¢; denote the-th tuple ofT’; definefd(0) as “”, (1) as “¢”, and C; as the condition

1 6(05) [ty [15], toy [15]]

J

for eachj = 1,...,n. An arrangement is intended in order to encode the currently guessed condition. A co6glition
will belong to the currently guessed conditionjf = 1, for eachj = 1...n. 7 works as follows: it scans, one after
another, all the possible arrangements; for each candidate arrangement it checks whether it encodes a valid condition,

having length at least, and, if this succeeds, it is verified thdt.| > s|T'|, where

c= A ¢

j=1l..n
=1

We note thatZ” needs an additional amount of space, to store counters and auxiliary pointers, which is logarithmic w.r.t.

the input size. o

Theorem 6.2 The fixed schema complexity of the problémg’, p, k, s), wherep € {cnf, gaing, laplace,} isin L.

Proof of Theorem 6.2. (Sketch The proof uses the same line of reasoning as in Theorem 6.1n ket|I|, and let
m = |T|. As above, we build a Turing Machin& employing O(log m) space, which solve&l, T p, k, s), where

p € {enf, gaing, laplacey, }. For each currently guessed rube= C, 7 must verify that, respectively:
o [Tarc| = s|Ts|if p = cnf;
o |Tpnrc| > s|T| + 0|Tg| if p = gaing;
o |Tprcl+ 1> s(|Ty| + h) if p = laplacey,.

As in Theorem 6.17 employs a fixed number of log-space counters, in order to carry this out. ]
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7 Further complexity results

This section studies the computational complexity of several interesting special cases of mining association rules. Most of
these cases assume some parameters (e.g., the lower bound on the rule, lmegtidex value threshok) of the general
association rule mining problem to be given constants. The relevance of the analysis we present below is two-fold. First,
it contributes to understand actual complexity sources. Second, from a practical point of view, users are often interested
in solving such simplified tasks, as, for instance, when one wishes to mine only rules with a support always larger than
0.75.

7.1 Support-problems with fixed threshold

As stated below, the rule mining problem remains very hard to solve even if the support thresholds is not part of the input.

Theorem 7.1 The problem(I, T sup, k, s) wheres is a fixed constant ifi0, 1), and 7" is a database with nulls i3P-

complete.

Proof. (Hardnes$ The proof is by reduction o€LIQUE. Let G = (V, E) be an undirected graph, consisting of a
set of noded” = {v1,...,v,} and set of edge& = {(vp,,vq,), .-, (Vp,.,vq,.)}. Leth be an integer. We build a

corresponding instancd !4, T sup, k, s) as follows:

1. let I be the set consisting of the attributgs. .. I,,, I,, 41, wherel; represents the node of G, forj =1,...,n

andI,; is an additional attribute;
2. Let T be a set built as the union of the following sets of tuples:

e T, which, for each edgév,,,v,,) of G (i = 1,...,m) includes a tuple; such thatt;[1,,] = t;[I,,] =

ti[In+1] = €, whereas;[I;] = 1 otherwise (j = 1,...,n+1).

e 77, includingc, copies of a tuple such that[I,,+1] = 1, andt[I;] = € otherwise (j = 1,...,n ), wherec,

is a value to be defined next;

e T'!, consisting of; copies of a tupleé such that[/,, 1] = ¢, andt[I;] = 1 otherwise (j = 1,...,n ), where

c1 is a value to be defined next.
3. letk=n—-h;

As for the values; andc; we choose two nonnegative integer values such that

h(h271) T

m-+co+cr

It can be shown that such two values exist, and are both polynomial bounded lindeed, lete = h(h — 1)/2, and

s = azx/(bx): we have
ax a—+c

br  m+4coter
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wherea, b andz are positive integers and < b. Thus,co = ax — a ande¢; = bz — m — (ax — «). Settingz equal to,
e.g.,m + «, yields the two required values. If can be shown by using the same argumentation of Theorem 4.2, that there
is a clique of sizeh in G iff (19, T sup, n — h, s) is a YES instance.

(MembershipSame as Theorem 4.4. a

Example 7.2 The following example shows how reduction fra@aIQUE to (7¢!9, T sup, k, s), used in Theorem 7.1,
is applied to a givelCLIQUE instance. Assume graph of Figure 10 is given, and that we want to build a corresponding
instance of 1°/¢, T, sup, k, %), such thaG has a clique of siz& ff (I/7, T, sup, k, 1) is a YES instance. Note that

G hasb nodes ané& edges. Thus:
1. I s {[1, Ce 316};
2. T4 is a set composed by the union of the following sets of tuples:

e T¢, which, for each edgév,,,v,,) of G (i = 1,...,8) includes a tuple; such thatt;[I,,] = t;[I,,] =

ti[Is) = €, whereag; [I;] = 1 otherwise (j = 1,...,5).
e 79, includingc, copies of a tuplé such that[Is] = 1, andt[I;] = e otherwise (j = 1,...,5), wherecy = 3;
e T, consisting ofc; copies of a tuple such that[Is] = ¢, andt[l;] = 1 otherwise (j = 1,...,5), where
Cc1 = 5.

3. letk=5-3=2;

Note thatcy andc; are such that
1 B 73(3271) +c1
2 8+4ci+c

The resulting databage is shown in Figure 10.

Remark. Note that the special casé, T, sup, k, 1) can be easily shown to be in P.

7.2 Support-problems with fixed thresholds on boolean databases

Lemma 7.3 Let C be a condition on a set of boolean attributes. Then there is a fafailynt(C),,..}  of #ACH

circuits computing7| over any input databas® defined on a set of boolean attributesuch that/ 2 att(C).

Proof. Letatt(C) C I = {Ay,...,A,}. We define the family{count(C),,.,} of #AC circuits as follows. The
circuit count(C), » hasm x n binary inputsz; j, ¢ = 1,...,m, j = 1,...,n, withm = |T| andn = |I|. The input
x;; is 11if t;[A;] = c(A;), 0 otherwise (i.e. ift;[A;] = €). The first level ofcount(C),,, consists ofm x-gates

G;, fori = 1,...,m. Each gateG; receives thdC| inputs{x; | Ar € att(C)}. Thus the output of7; is 1 iff

3Note that here and elsewhere, by little abuse of notation, and for simplicity, we denote a circuit family recognizing inputs in the form of a
boolean matrix by using the subscript, n instead of the usual subscript wherei denotes the input size
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| |n|e|n|u]s

t{v1,v2} € € 1 1 1 €

L{v1,03} € 1 € 1 1 €

Livg v} € 1 1 € 1 c

Uiy vs} 11 el el 1l c

Uiy vy} 11 el 1] el c

2
t{vg,04} 111 el el c
5 biogosy || 1] 1 ] €] 1] € .
t{1;4,v5} 1 1 1 € € €

4
tl H € ‘ € ‘ € ‘ € ‘ € H 1

ts el el el el € 1
t9 1 1 1 1 1 €
t20 H 1 ‘ 1 ‘ 1 ‘ 1 ‘ 1 ‘ ¢

Figure 10: An example of the reduction used in Theorem 7.1
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t; = C. The second level afount(C),, ,, consists of a single--gate receiving in input the outputs of all titg gates,
fori=1,...,m. Thus the circuitount(C),, ,, calculatesT| when the input has size x n. O

The following Theorems (7.4, 7.7 and 7.8) associate some task related to mining association rules to very low complexity
classes such aBC" andACP. It turns out that these problems are highly parallelizable (recalltidtc TC® C NC?,

[16]).

Theorem 7.4 Let I be a set of boolean attributes, and kebe a fixed constant. Then the complexitylofr’, sup, k, s) is
in TCC.

Proof. Exploiting Lemma 7.3 and using the same argumentation of Claim 4.9, it can be shown that the language
{B=Honl |sup(B= H,T)> s}

is in the class’'C°. Thus, there is a constant-depth polynomial size uniform fafily(I ). } of circuits of unbounded
fan-in AND, OR and MAJORITY gates, such that(1z)., , outputs 1 iffsup(B = H,T) > s, when the input database
has sizen x n. We can build ar'C® family of circuits solving the(I, T, sup, k, s) problem wherk is fixed as follows.
Consider the circuiC(I),, , obtained connecting the outputs of all the circu@t§Ig),, , wherelp € {S | S C
I,|S| = k}, through an OR gate. Since the number of these circu{t$/is= O(|1|*), hence polynomial ii|, (1),
has constant depth and polynomial size as well. The result then follows from Proposition 4.1. a
Figure 11 describes a generic circuit belonging to the above family, vxthere(',ﬁ‘). Assumingl = {4,,...,A,} and

T = {t1,...,tn}, the generic input is represented by setting; to 1 iff ¢;,[A4,] = c(4,).

. CI(IRl)m,n : -\)ﬂ
1%

. CI(IRZ )m,n

. inm,n

in1,1

Figure 11: A generic circuit belonging to the family defined in Theorem 7.4

It is of interest to investigate the complexity of mining association rules when the w#iies fixed. In this case
(I, T, sup, k, s) corresponds to the problem of finding an association rule satisfied by almost a fixed number of transac-
tions. Such a problem becomes of relevance when it is necessary to find a set of transactions of given size satisfying a

certain property (e.g. in statistic sampling, see [24]).
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Definition 7.5 Given a set of boolean attributés= {4,,..., 4, }, and a databasg = {¢,,...,t,,} defined on/, we
define (I,T)~! to be equal to the paifl’, 7"), wherel’ = {A},..., Al } is a set of boolean attributes, where each
A’ denotes thg-th tuple of T, for j = 1,...,m, and7” = {t},...,t,} is a database defined df with ¢; such that
ti[AS] = 1if ¢;[A;] = c(A;), andt;[A’] = e otherwise (i.e. ift;[A;] = ¢), corresponding to theth attribute of7, for

i=1,...,n,5=1,...,m.

Proposition 7.6 Let be! a set of boolean attributes, [Etbe a database ah let k be a natural numbet, < k£ < |I], let
5,0 < s < 1, be arational number, and I&t', T") = (I,T)~*. Then:

(I, T, sup,k,s)isaYES instance (I',T', sup, [s|T|], m) is a YES instance
Proof. (I,T,sup,k,s) is a YES instance iff there is an association rile= H onI s.t. |B = H| > k and
|Team| > [s|T|] iff there is an association rul®’ = H’ onI’ s.t. |B’ = H'| > [s|T|] and|T /| > kK iff

(I', T, sup, [s|TV], fi;) is @ YES instance. O

Theorem 7.7 LetI be a set of boolean attributes, and [etT’|]| be a fixed constant. Then the complexitylofl’, sup, k, s)
is in TCC.
Proof. The result follows immediately from Theorem 7.4 and Proposition 7.6. a

Theorem 7.8 Let I be a set of boolean attributes, and letand [s|T'|] two fixed constants. Then the complexity of
(I, T, sup, k, s) is in ACY.

Proof. LetI = {4;,...,A,}, andletl’ = {t4,...,t,}. Let B = H be an association rule ah and let/ be the set
att(B A H). Define the family{C’(Ir)m.» } Of ACg circuits as follows. The circuit’ (I )., hasn x m binary inputs
zi5,t=1,....,m,j=1,...,n,withm = |T| andn = |I|. The inputz; ; is 1 if ¢;[4;] = ¢(A;), 0 otherwise (i.e. if
ti[A;] = €). The first level ofC’ (1), consists ofn AND gatesG;, fori = 1,...,m. Each gateZ} receives thélg|

inputs{z; 1. | Ax. € Ir}. Thus the output ofi} is 1iff ¢; - (B A H). The second level af” (1), consists of([;::ﬂ)
AND gatesG?, forj =1,...,|g| where

g:{FQ{G%,...,G,ln D |F| = [sm]}.

Lo | Iy | I3 | Is

flelell

t1] e | 1| €] €

th|1]1]|e

tol e | 1111
thlel 1|1

t3 1 € 1 1
hlell1]1

Figure 12: A databas@, T') and its transposed versigi', 77) 1.
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The gateG? receives in input the outputs of them| gates contained within theth element ofy. The third level consists

of a single OR gate receiving in input the outputs of all @fegates, forj =1, .. ., (rs";]). Thus the circuiC’(Ig)m.n

decides ifl Tpz| > [sm]. The size of each circu@®’ (1), . is polynomial, becausg| < m/*™1, and[sm] is fixed.

We can build amAC° circuit solving (I, T, sup, k, s), for k and [s|T|] fixed, as follows. Consider the circwit(I),, »,
obtained connecting the outputs of all the circdit$z),, », with Ir C I such thatlz| = k (this suffices by Proposition

4.1), through an OR gate. Since the number of these circu@fé‘)s: O(|I|F), hence polynomialk’,, ,,(I) has constant

depth and polynomial size as well. The first and second level (of AND gates), and the third and fourth level (of OR gates),
can be easily each reorganized into a single level, thus giving an overall circuit family of depth 2. Hence the result follows.

a

8 Conclusions

In this paper we have analyzed the computational complexity of mining association rules. We have considered the most
widely accepted form of association rules that use well-known quality indices, namely, support, confidence, gain and
laplace. After having formally defined association rule mining problems, we have shown that the general versions of
these problems are NP-complete, except when confidence is considered over databases without nulls. Then, we have
analyzed several interesting restricted cases, for most of which lower complexity bounds have been proved to hold. It is
relevant to note that these cases are often related to complexity classes for which the existence of highly parallelizable
algorithms has been shown. For example, for sparse databases, the complexities of the mining problems are within L. In
some other cases the mining problems lie witli@" or within ACS. The complexity analysis presented in this paper

may be extended to include other forms of quality indices like, for instarteypyandimprovemenfl19, 18]. Moreover,

other forms of association rules might be considered as, for instance, sequential patterns [4]. We leave these topics to

future research.
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