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Distributed Strategies for Mining Outliers in
Large Data Sets

Fabrizio Angiulli, Stefano Basta, Stefano Lodi, and Claudio Sartori

Abstract—We introduce a distributed method for detecting distance-based outliers in very large data sets. Our approach is based
on the concept of outlier detection solving set [2], which is a small subset of the data set that can be also employed for predicting
novel outliers. The method exploits parallel computation in order to obtain vast time savings. Indeed, beyond preserving the
correctness of the result, the proposed schema exhibits excellent performances. From the theoretical point of view, for common
settings, the temporal cost of our algorithm is expected to be at least three order of magnitude faster than the classical nested-
loop like approach to detect outliers. Experimental results show that the algorithm is efficient and that its running time scales
quite well for increasing number of nodes. We discuss also a variant of the basic strategy which reduces the amount of data to
be transferred in order to improve both the communication cost and the overall run time. Importantly, the solving set computed
by our approach in distributed environment has the same quality as that produced by the corresponding centralized method.

Index Terms—Distance-based outliers, outlier detection, parallel and distributed algorithms.
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1 INTRODUCTION

Outlier detection is the data mining task whose goal
is to isolate the observations which are considerably
dissimilar from the remaining data [11]. This task
has practical applications in several domains such
as fraud detection, intrusion detection, data cleaning,
medical diagnosis, and many others. Unsupervised
approaches to outlier detection are able to discrimi-
nate each datum as normal or exceptional when no
training examples are available. Among the unsuper-
vised approaches, distance-based methods distinguish
an object as outlier on the basis of the distances to
its nearest neighbors [15], [19], [6], [4], [2], [20], [9],
[3]. These approaches differ in the way the distance
measure is defined, but in general, given a data set of
objects, an object can be associated with a weight or
score, which is, intuitively, a function of its k nearest
neighbors distances quantifying the dissimilarity of
the object from its neighbors. In this work we follow
the definition given in [4]: a top-n distance-based
outlier in a data set is an object having weight not
smaller than the n-th largest weight, where the weight
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of a data set object is computed as the sum of the
distances from the object to its k nearest neighbors.

Many prominent data mining algorithms have been
designed on the assumption that data are centralized
in a single memory hierarchy. Moreover, such algo-
rithms are mostly designed to be executed by a single
processor. More than a decade ago, it was recognized
that such a design approach was too limited to deal
effectively with the issue of continuous increase in the
size and complexity of real data sets, and in the preva-
lence of distributed data sources [22]. Consequently,
many research works have proposed parallel data
mining (PDM) and distributed data mining (DDM)
algorithms as a solution to such issue [14].

Today, the arguments for developing PDM and
DDM algorithms are even stronger, as the tendency
towards generating larger and inherently distributed
data sets amplifies performance and communication
insufficiencies. Indeed, when applied to very large
data sets, even scalable data mining algorithms may
still require execution times that are excessive when
compared to the stringent requirements of today’s
applications. Parallel processing of mining tasks could
dramatically reduce the effect of constant factors and
decrease execution times. Moreover, in mining data
from distributed sources, the data set is fragmented
into many local data sets, generated at distinct nodes
of a network. A widely adopted solution entails the
transfer of all the data sets to a single storage and
processing site, usually a data warehouse, prior to
the application of a centralized algorithm at the site.
The advantages of such a solution are simplicity and
feasibility with established technology. On the other
hand, the transmission times of large data sets are
of the same order of magnitude as running times of
scalable data mining algorithms, when executed on a
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system with high-performance secondary memory.
In particular, important application domains of out-

lier detection require rapid responses [7]: The detec-
tion of outliers in image processing, e.g., in mam-
mograms, is a challenging problem due to the large
size of the input [21]; in the detection of disease
outbreaks, patient records are continuously generated
and analyzed to discriminate as quickly as possible
between innocuous diseases and outbreaks of dan-
gerous ones; in fault detection in mechanical units,
condition monitoring is used to discover anomalies
and reduce the cost of periodic maintenance [10], [13].
A large number of measurements contributes to the
model of a non defective unit. Moreover, the discov-
ery of anomalies must be carried out timely, because
preventive actions must be taken as early as possible.
A comprehensive survey on anomaly detection and
its applications can be found in [7].

In the present work, we propose a PDM/DDM
approach to the computation of distance-based out-
liers. The key point of our approach is to exploit the
locality properties of the problem at hand to partition
the computation among the processors of a multi-
processor system or the host nodes of a communi-
cation network to obtain vast time savings.

Next, we recall some methods for detecting outliers
designed for distributed environments (Section 1.1),
pointing out differences with our approach, and then
present our contributions (Section 1.2).

1.1 Related Work

The outlier detection task can be very time consuming
and recently there has been an increasing interest in
parallel/distributed methods for outlier detection.

Hung and Cheung [12] presented a parallel version,
called PENL, of the basic NL algorithm [15]. PENL is
based on a definition of outlier employed in [15]: a
distance-based outlier is a point for which less than
k points lie within the distance δ in the input data
set. This definition does not provide a ranking of
outliers and needs to determine an appropriate value
of the parameter δ. Moreover, PENL is not suitable for
distributed mining, because it requires that the whole
data set is transferred among all the network nodes.

Lozano and Acuna [17] proposed a parallel version
of Bay’s algorithm [6], which is based on a definition
of distance-based outlier coherent with the one used
here. However, the method did not scale well in two
out of the four experiments presented. Moreover, this
parallel version does not deal with the drawbacks of
the centralized version in [6], which is sensitive to the
order and to the distribution of the data set.

Otey, Ghoting and Parthasarathy in [18] and Ko-
ufakou and Georgiopoulos in [16] proposed their
strategies for distributed high-dimensional data sets.
These methods are based on definitions of outlier
which are completely different from the definition

employed here, in that they are based on the concept
of support, rather than on the use of distances.

Dutta, Giannella, Borne and Kargupta [8] proposed
algorithms for the distributed computation of princi-
pal components and top-k outlier detection. In their
approach, outliers are objects that deviate from the
correlation structure of the data: A top-k outlier is an
object having at most the k-th largest sum of squared
values in a fixed number of lowest-order principal
components, where each component is normalized to
its deviation. This definition neither implies nor is
implied by the definition employed in this work. For
example, if all clusters are located far from the mean
of the data set, distance-based outliers close to the
mean are not necessarily exceptional in the correlation
structure. On the other hand, objects having large
values in the first principal components need not have
smaller weight than objects which deviate from the
correlation structure in the low-order components.

1.2 Contributions

In this work we present a distributed approach to
detect distance-based outliers, based on the concept
of outlier detection solving set [2].

As a matter of fact, we will show (see Section 3)
that a single iteration of the main cycle of the sequen-
tial SolvingSet algorithm can be efficiently translated
according to a parallel/distributed implementation.

The outlier detection solving set is a subset S of the
data set D that includes a sufficient number of objects
from D to allow considering only the distances among
the pairs in S ×D to obtain the top-n outliers.

The solving set is a learned model that can be seen
as a compressed representation of D. It has been shown
that it can be used to predict if a novel object q is an
outlier or not by comparing q only with the objects in
S, instead of considering all the objects in D. Since
the solving set contains at least the top-n outliers,
computing the solving set amounts to simultaneously
solve the outlier detection task.

Our contributions can be summarized as follows:

• We present a distributed method (called Distribut-
edSolvingSet) to detect distance-based outliers,
which is suitable to be used both in parallel and
distributed scenarios;

• The proposed method exhibits excellent perfor-
mances. Indeed, the temporal cost in charge of
each node is O(%`Tb), where % is the relative size of
the (distributed) solving set, that is usually a very
small fraction of the data set, ` is the number of
nodes involved in the computation, and Tb is the
time required to compute all pairwise distances
among data set objects, that is the time needed to
determine the nearest neighbors of each object.
In common settings, the term %

` is likely to be
smaller than 1

1000 . Moreover, experimental results
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confirmed that the run time scales up well with
respect to the number of nodes;

• Other than solving the distance-based outlier
detection task in the distributed scenario, the
method computes an outlier detection solving set
of the overall data set. It is worth to notice that
this is a unique peculiarity of our method, since
other distributed methods for outlier detection
are not able to return a model of the data that
can be used for predicting novel outliers [2];

• Experimental results confirm that the size of the
distributed solving set is comparable to that of
the corresponding centralized solving set and
that the two sets are of the same quality;

• We present a variant of the basic method,
called LazyDistributedSolvingSet, which reduces
the amount of data to be exchanged from the
nodes with respect to DistributedSolvingSet by
adopting a strategy that leads to the transmission
of a reduced number of distances while slightly
increasing the number of communications. Ex-
perimental results reveal that LazyDistributedSolv-
ingSet reduces the amount of data transferred
over the network and achieves performance im-
provements whose entity depends on the execu-
tion settings under consideration.

The rest of the paper is organized as follows. Section 2
presents preliminary definitions. Section 3 introduces
our approach and describes the two above cited al-
gorithms. Section 4 discusses experimental results.
Finally, Section 5 presents conclusions of the work.

2 DEFINITIONS AND TASK

In the following, we assume any data set is a finite
subset of a given metric space.

Definition 2.1 (Outlier weight) Given an object p ∈
D, the weight wk(p,D) of p in D is the sum of the
distances from p to its k nearest neighbors in D.

Definition 2.2 (Top n outliers) Let T be a subset of D
having size n. If there not exist objects x ∈ T and y in
(D \ T ) such that wk(y,D) > wk(x,D), then T is said
to be the set of the top n outliers in D. In such a case,
w∗ = minx∈T wk(x,D) is said to be the weight of the
top n-th outlier, and the objects in T are said to be the
top n outliers in D.1

Definition 2.3 (Outlier Detection Solving Set) An
outlier detection solving set S is a subset S of D such
that, for each y ∈ D \ S, it holds that wk(y, S) ≤ w∗,
where w∗ is the weight of the top n-th outlier in D.

1. In case of ties on the weight values, some objects y in (D \T )
such that wk(y,D) = w∗ could exist. In this case, the objects x in
T such that wk(x,D) = w∗ are nondetermistically selected among
those scoring the same value of weight.

We note that a solving set S always contains the set
T of the top n outliers in D and, moreover, it has the
property that can be used to predict novel outliers [2].

In the sequel, we assume a supervisor node N0 and `
local nodes N1, . . . , N` are available. We further assume
that the data set D is partitioned into ` data sets
D1, . . . , D`, with each data set Di located at node Ni.
We call D the global data set and the generic Di a local
data set. Our goal is to compute both a solving set S
and the set T (which, by definition of solving set, is
contained in S) of the top n outliers of the data set D.

3 ALGORITHMS

In this section we describe two algorithms, named
DistributedSolvingSet and LazyDistributedSolvingSet,
for computing the top n distance-based outliers in a
distributed data set. Both of these algorithms extend
the SolvingSet algorithm [2] strategy to the distributed
environment. First of all, we briefly recall the Solv-
ingSet algorithm.

3.1 SolvingSet algorithm
At each iteration (let us denote by j the generic
iteration number), the SolvingSet algorithm compares
all data set objects with a selected small subset of
the overall data set, called Cj (for candidate objects),
and stores their k nearest neighbors with respect to
the set C1 ∪ . . . ∪ Cj . From these stored neighbors,
an upper bound to the true weight of each data
set object can thus be obtained. Moreover, since the
candidate objects have been compared with all the
data set objects, their true weights are known. The
objects having weight upper bound lower than the n-
th greatest weight associated with a candidate object,
are called non active (since these objects cannot belong
to the top-n outliers), while the others are called ac-
tive. At the beginning, C1 contains randomly selected
objects from D, while, at each subsequent iteration
j, Cj is built by selecting, among the active objects
of the data set not already inserted in C1, . . . , Cj−1

during the previous iterations, the objects having the
maximum current weight upper bounds. During the
computation, if an object becomes non active, then it
will not be considered anymore for insertion into the
set of candidates, because it cannot be an outlier. As
the algorithm processes new objects, more accurate
weights are computed and the number of non active
objects increases. The algorithm stops when no more
objects have to be examined, i.e. when all the objects
not yet selected as candidates are non active, and thus
Cj becomes empty. The solving set is the union of the
sets Cj computed during each iteration.

3.2 DistributedSolvingSet algorithm
The DistributedSolvingSet algorithm adopts the same
strategy of the SolvingSet algorithm. It consists of a
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main cycle executed by a supervisor node, which
iteratively schedules the following two tasks: (i) the
core computation, which is simultaneously carried out
by all the other nodes; (ii) the synchronization of the
partial results returned by each node after completing
its job. The computation is driven by the estimate of
the outlier weight of each data point and of a global
lower bound for the weight, below which points are
guaranteed to be non–outliers. The above estimates
are iteratively refined by considering alternatively
local and global information.

It is worth to observe that several mining algo-
rithms deal with distributed data set by computing
local models which are aggregated in a general model
as a final step in the supervisor node. The Distribut-
edSolvingSet algorithm is different, since it computes
the true global model through iterations where only
selected global data and all the local data are involved.

The core computation executed at each node con-
sists in the following steps: (i) receiving the current
solving set objects together with the current lower
bound for the weight of the top n-th outlier, (ii) com-
paring them with the local objects, (iii) extracting a
new set of local candidate objects (the objects with
the top weights, according to the current estimate)
together with the list of local nearest neighbors with
respect to the solving set and, finally, (iv) determin-
ing the number of local active objects, that is the
objects having weight not smaller than the current
lower bound. The comparison is performed in several
distinct cycles, in order to avoid redundant computa-
tions. These data are used in the synchronization step,
from the supervisor node, to generate a new set of
global candidates to be used in the following iteration,
and for each of them the true list of distances from
the nearest neighbors, to compute the new (increased)
lower bound for the weight.

The algorithm DistributedSolvingSet is shown in Fig-
ure 1. Table 1 summarizes variables, data structures,
and functions employed by the algorithm. The algo-
rithm receives in input the number ` of local nodes,
the values di representing the sizes of the local data
sets Di, a distance function dist on the objects in D,
the number k of neighbors to consider for the weight
calculation, the number n of top outliers to find, an
integer m ≥ k, representing the number of objects to
be added to the solving set at each iteration. It outputs
the solving set DSS and the set OUT containing the
top-n outliers in D. At the beginning of the execution
of the algorithm, DSS and OUT are initialized to the
empty set (lines 1-2), while the set of candidates C is
initialized by picking at random m objects from the
whole data set D (lines 3-6; refer to the procedure
NodeInit for details). The main cycle (lines 9-22)
stops when the set C becomes empty. The points
currently belonging to C are added to the solving set
DSS (line 10). At the beginning of each iteration, the
set of candidates C is sent to the procedures NodeCompi

act, acti number of objects in the global (local, resp.) active set
C,Ci global and local set of candidates, respectively
d, di global and local sizes of the dataset, respectively

DSS
Distributed Solving Set, is the set of objects which are
compared with a new object to compute an upper
bound to its outlier weight

get k NNC

this function returns the k smallest distances among
those received in input; it is employed to compute the
true k nearest neighbors of the candidate objects

k number of objects considered for the weight calculation
` number of local nodes

LCi

Local Candidates: heap storing mi pairs 〈p, w〉, where
p is an object of Di and w is the associated weight
upper bound; it is employed to store the local objects
to be employed as candidates in the next iteration

LNNCi

Local Nearest Neighbors for Candidates: array of m
heaps LNNCi[q], each of which is associated with an
object q of the current candidate set C and contains the
distances separating q from its k nearest neighbors in
the local data set Di

m number of objects to be added to the solving set at each
iteration

minOUT lower bound to the weights of the top–n outliers
n number of top outliers to find

NNi

distances to Nearest Neighbors: array of di heaps
NNi[p], each of which is associated with an object
p of the local data set Di and contains the distances
separating p from its k nearest neighbors with respect
to the so far seen candidate sets C

NNC

distances to Nearest Neighbors for Candidates: array
of m arrays NNC[q], each of which is associated with
an object q of the current candidate set C and contains
the distances separating q from its k nearest neighbors
in the whole data set

OUT
Outliers: heap of n pairs 〈p, w〉, where p is an object of
D and w is the associated true weight; it is employed
to store the current top-n outliers of the whole data set

Sum
this function computes the weight of a generic object
by adding its k nearest neighbor distances

UpdateMax

this function updates the heap OUT by substituting
the pair 〈p, w〉 of OUT having associated the mini-
mum weight w with the novel pair 〈q, Sum(NNC[q])〉,
provided that Sum(NNC[q]) > w

UpdateMin

this function updates the heap LNNCi[p] by substi-
tuting the pair 〈s, σ〉 of LNNCi[p] havin associated
the maximum distance σ with the novel pair 〈q, δ〉,
provided that δ < σ

TABLE 1
Variables, data structures and functions.

running at each local node (the instance NodeCompi
runs at node Ni, for i = 1, 2, . . . , `), together with
the value minOUT representing a lower bound to the
weight of the top-n outlier, and the total number act
of active objects. Each NodeCompi procedure returns:

• the data structure LLNCi containing the k dis-
tances to the nearest neighbors in the local data
set Di of the candidate objects in C;

• the updated number acti of active objects in the
local data set Di;

• the data structure LCi containing mi objects com-
ing from the local data set Di to be used to build
the set of candidates C for the next iteration; the
number mi represents the percentage of the active
objects in Di, and is defined as mi = dmacti

act e
(note that when the structures LCi are returned
to the supervisor node by the local nodes, these
data structure no longer include the weights asso-
ciated with the objects therein stored; see Table 1
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Algorithm DistributedSolvingSet
begin

1: DSS = ∅;
2: OUT = ∅;
3: d =

∑`
i=1 di;

4: for each node Ni ∈ N

5: NodeInit(dm di
d
e, Ci);

6: C =
∪`

i=1 Ci;
7: act = d;
8: minOUT = 0;
9: while (C 6= ∅) {
10: DSS = DSS ∪ C;
11: for each node Ni ∈ N
12: NodeComp(minOUT,C, act, LNNCi, LCi, acti);
13: act =

∑`
i=1 acti;

14: for each q ∈ C {
15: NNC[q] = get k NNC(

∪l
i=1 LNNCi[q]);

16: UpdateMax(OUT, 〈q, Sum(NNC[q])〉)
17: }
18: minOUT = Min(OUT );
19: C = ∅;
20: for each p ∈

∪`
i=1 LCi

21: C = C ∪ {p};
22: }

end

Fig. 1. The DistributedSolvingSet algorithm.

for details).
After having collected all the results of the procedures
NodeCompi, the true weight associated with the candi-
date objects in the set C can be computed (lines 14-17).
The k nearest neighbors’ distances in the whole data
set of each candidate object q are obtained from the
distances stored in the data structures LNNCi[q] (line
15); in fact, the k smallest distances in the union of all
LNNCi[q] sets represent the distances separating q to
its k nearest neighbors in the global data set. Then,
the heap OUT , containing the current top-n outliers,
is updated (line 16). To conclude the description of
the main iteration of the algorithm, the lower bound
minOUT to the weight of the nth top outlier is up-
dated (line 18), and the novel set of candidate objects
C is built (lines 19-21). We next provide details of the
procedures NodeInit and NodeComp.

NodeInit procedure. The procedure NodeIniti (see
Figure 2, lines 1-3) runs at the local node Ni. It receives
in input an integer value mi and returns a randomly
selected set Ci of mi data points belonging to the local
data set. The variable acti, that is the number of the
active data points in the local data set, is set to the
local data set size. Finally, both the variable acti and
the set Ci are stored in the local node memory.

NodeComp procedure. The procedure NodeCompi,
shown in Figure 2, runs at local node Ni. First of
all, the value acti and the set of local candidates Ci

(computed either by NodeIniti or during the pre-
vious execution of NodeCompi) are retrieved in the
local memory (line 4). Then, the objects in Ci are
removed from the local data set (line 5) and the
number acti of local active objects is updated (line 6).

procedure NodeIniti(mi, Ci) {
1: Ci = RandomSelect(Di,mi);
2: acti=|Di|;
3: store (acti, Ci);

}

procedure NodeCompi(minOUT,C, act, LNNCi, LCi, acti) {
4: load (acti, Ci);
5: Di = Di \ Ci;
6: acti = acti − |Ci|;
7: init(LCi,dmacti

act
e);

8: for each (p in Ci)
9: LNNCi[p]=NN [p];
10: for each (pj in Ci = {p1, . . . , p|Ci|})
11: for each (q in {pj , . . . , p|Ci|}) {
12: δ = dist(pj , q);
13: UpdateMin(LNNCi[pj ], 〈q, δ〉);
14: if (pj 6= q) UpdateMin(LNNCi[q], 〈pj , δ〉);
15: }
16: for each (p in Ci)
17: for each (q in (C\Ci) {
18: δ = dist(p, q);
19: UpdateMin(LNNCi[p], 〈q, δ〉);
20: }
21: acti = 0;
22: for each (p in Di) {
23: for each (q in C)
24: if (max{Sum(NNi[p]), Sum(LNNCi[q])} ≥ minOUT ) {
25: δ = dist(p, q);
26: UpdateMin(NNi[p], 〈q, δ〉);
27: UpdateMin(LNNCi[q], 〈p, δ〉);
28: }
29: if (Sum(NNi[p]) ≥ minOUT ) {
30: acti = acti + 1;
31: UpdateMax(LCi, 〈p, Sum(NNi[p])〉);
32 }
33: }
34: Ci = objects(LCi);
35: store (acti, Ci);

}

Fig. 2. The procedures employed in the Distributed-
SolvingSet algorithm.

Before starting the comparison of the local objects
with the current candidate objects, the heap LCi is
initialized by means of the procedure init in order
to accommodate mi objects (line 7). Moreover, the
heaps LNNCi[p] associated with the local candidate
objects p are initialized to the corresponding heaps
NNi (lines 8-9). The heaps LNNCi[p], for p not in
Ci, are initially empty. Thus, only the local node that
generated the candidate object p is aware of the nearest
neighbors’ distances of p with respect to the previous sets
of candidates (distances which are actually stored in the
heap NNi[p] stored on the local node of the candidate
object p). By adopting this strategy, we are able to
achieve vast communication savings. The supervisor
node will then take care of selecting the true nearest
neighbor distances of p among the distances stored
in all the heaps LNNCi[p] (i = 1, . . . , `). At this
point, the weights of the objects in Ci are computed
by comparing each object in Ci with each object in
the local data set. This operation is split into three
steps (corresponding to three different nested loops)
in order to avoid duplicated distance computations
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(lines 10-33). Thus, the first double cycle (lines 10-
15) compares each object in Ci with all other objects
in Ci and updates the associated heaps. The second
double cycle (lines 16-20) compares the objects of Ci

with the other objects of C. Finally, the third double
cycle (lines 21-33) compares the objects of Di with the
objects of C. In particular, the objects p and q, with
p ∈ Di and q ∈ C, are compared only if at least
one of the two objects could be an outlier (that is,
if the maximum between their weight upper bounds
Sum(NNi[p]) and Sum(LNNCi[q]) is greater than the
lower bound minOUT ). During the last double cycle,
if the weight upper bound of the local object p is not
smaller than minOUT , then the number acti of local
active objects is increased by one (note that acti is set
to 0 at the beginning of the third double cycle; see line
21) and the heap LCi is updated with p (lines 29-32).
Finally, Ci is populated with the objects in LCi (line
34) and both acti and Ci is stored in the local memory
(line 35) in order to be exploited during the next call
of NodeCompi.

This concludes the description of the Distributed-
SolvingSet algorithm. In the next section the cost of
the algorithm is analyzed. Before doing that, we prove
that the algorithm detects the distance-based outliers
in the data set.

Theorem 3.1 The DistributedSolvingSet algorithm com-
putes the top n outliers of the input data set D.

Proof: Since the objects stored in OUT have been
compared with all the other data set objects, their
true weight is known. Thus, to complete the proof, it
suffices to prove that, for each object y in (D \OUT ),
it holds wk(y,D) ≤ minOUT .

Consider a generic object y of D. Let y belong to Di

(1 ≤ i ≤ `). The value Sum(NNi[y]) is an upper bound
to the true weight wk(y,D) of y, as NNi[y] contains
the distances from y to k objects in DSS.

The algorithm terminates when all the sets LCi,
and, thus, the set C, become empty. When this hap-
pens there are no more active objects. In other words,
the set OUT returned by the algorithm is such that,
for each y ∈ (D \ OUT ), wk(y,D) ≤ Sum(NNi[y]) <
minOUT = minx∈OUT wk(x,D). This completes the
proof.

3.3 Cost of the DistributedSolvingSet algorithm
Let a be the number of attributes of a data object and
t the number of iterations performed by Distribut-
edSolvingSet. Moreover, let O(a) denote the cost of
computing the distance between two data set objects.

Temporal cost. Let us first consider the temporal cost of
the algorithm. The dominating operations performed
in the procedures NodeCompi are the computation of
the distance between two objects, which costs O(a),
and the update of the nearest neighbors’ distance

heaps, an operation which costs O(log k). These two
operations are accomplished O(m|Di|) times, with m
the size of the candidate set C and |Di| the size of
the local data set. Assuming that the data set is fairly
distributed among the local nodes, the temporal cost
in charge of one single local node is

O

(
tm · |D|

`
(a+ log k)

)
.

Consider now the supervisor node. In this case the
dominating operations consist in the retrieval of the
true k nearest neighbors’ distances of a candidate
object among the total `k distances returned by the `
local nodes, and in the update of the heap containing
the top n outliers. Assuming that the supervisor sorts
the `k distances in order to determine the k smallest
ones, the total cost in charge of the supervisor node is

O (tm · ((k`) log(k`) + log n)) .

The overall temporal cost of the algorithm can be
obtained as the summation of the above two costs. Let
% denote the relative size % = |DSS|

|D| of the distributed
solving set computed by DistributedSolvingSet. Since
tm = |DSS|, the temporal cost in charge of local nodes
can be reformulated as follows:

O
(%
`
· |D|2(a+ log k)

)
. (1)

Note that the term O(|D|2(a + log k)) corresponds
to the cost of the naive nested loop strategy that
computes all the pairwise distances in order to de-
termine the true k nearest neighbors of the data
set objects. Thus, the DistributedSolvingSet algorithm
improves the cost of the basic search strategy by in-
jecting the small factor %

` into the worst case temporal
cost expression, factor which corresponds to the ratio
between the relative solving set size % ≤ 1 and the
number of local nodes ` ≥ 1. We notice that the value
of % is usually a very small fraction of the data set
size (please refer to the experimental part). E.g., for
% ≈ 0.01 and ` = 10, the factor %

` is approximatively
one over one thousand.

As for the term

O (%|D| · ((k`) log(k`) + log n)) (2)

associated with the supervisor node, it is amortized
by the factor %, but does not take advantage of the
distributed strategy, as the factor 1

` is absent. Indeed,
this cost is negligible with respect to the cost in
charge of the local nodes and it is not convenient to
parallelize it.

The larger the number of local nodes, the closer
the cost in Equation (1) to the cost in Equation (2).
Note that if the number of local nodes is such that the
two execution times are comparable, then the speedup
worsens. However, this happens when the number of
local nodes is so large that the absolute run time of
the algorithm is very small.
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Transmission cost. Consider now the amount of data
transferred by the algorithm. The communication
among the supervisor node and the local nodes is
carried out by the procedures NodeInit and NodeComp.

The procedure NodeInit is executed on each local
node just one time. It requires that one integer value
(that is the first parameter) is sent to local nodes and
that mi objects are transferred from the local node i
to the supervisor one.

The procedure NodeComp is executed on each local
node one time per iteration of the DistributedSolv-
ingSet. At each run, it requires that one floating point
number, m objects, and one integer value (that is, the
first three parameters respectively) are sent from the
supervisor node to the local ones and that mk dis-
tances, mi data objects and one integer value (that is,
the remaining parameters respectively) are returned
from each local node to the supervisor one.

Then, the total amount of transferred data ex-
pressed in terms of number of exchanged floating
point or integer numbers is

TD =
∑̀
i=1

(1+mia)+ t(1+ma+1+
∑̀
i=1

(mk+mia+1)).

Given that
∑`

i=1 mi = m and tm = |DSS|, then

TD = `+ma+ 2t+ |DSS|(a+ `k + a) + t`.

We note that m � |DSS| and, hence, that am �
|DSS|a, and also that the terms `, 2t, and 2t` are
negligible with respect the other ones. Therefore, the
following approximation can be safely assumed

TD ≈ |DSS|(`k + 2a).

Now we relate the amount TD of transferred data to
the size |D|a of the data set. Let |DSS| = %|D|, then

TD% =
TD

|D|a
≈ %`k

a
.

Thus, TD% is directly proportional to relative size %
of the distributed solving set. Importantly, for n and
k fixed, it has been observed in the experiments in [2]
that % decreases more than linearly as the size |D|
increases, since the size of the distributed solving set
DSS tends to stabilize.

From the analysis above, we can derive the follow-
ing considerations:

• even if the amount of transferred data is great (for
large values of `k), the computational gain due to
computation distribution remains remarkable;

• the data objects transmitted among the nodes are
only those belonging to DSS and they represent
a small percentage of the data objects in D;

• most of the transmitted data are not data points,
but distances, this accounts for the inverse pro-
portionality of the percentage of transmitted data
with respect to the dimensionality of the data set.

Algorithm DistributedSolvingSet
begin

1: DSS = ∅;
2: OUT = ∅;
3: d =

∑l
i=1 di;

4: for each node Ni ∈ N

5: NodeInit(dm di
d e, Ci);

6: C =
∪l

i=1 Ci;
7: act = d;
8: minOUT =0;
9: while (C 6= ∅) {
10: DSS = DSS ∪ C;
11: for each node Ni ∈ N
12: NodeComp(minOUT,C, act, d k

` e + 1, LNNCi, LCi, acti);
13: act =

∑l
i=1 acti;

14: repeat
15: for each q ∈ C {
16: NNC[q] = get k NNC(NNC[q] ∪ (

∪`
i=1 LNNCi[q]));

17: u NNC[q] = 0;
18: nodes[q] = ∅;
19: if ∃ j s.t. mini{last(LNNCi[q])} = NNC[q][j] {
20: u NNC[q] = k − j;
21: cur last[q] = NNC[q][k];

22: nodes[q] =
∪`

i=1 Ni s.t. last(LNNCi[q]) ∈ NNC[q];
23: }
24: }
25: for each node Ni ∈

∪
q∈C nodes[q]

26: NodeReq(u_NNC, cur_last, nodes, LNNCi);
27: }
28: until

∪
q∈C nodes[q] = ∅;

29: for each q ∈ C
30: UpdateMax(OUT, 〈q, Sum(NNC[q])〉);
31: minOUT = Min(OUT );
32: C = ∅;
33: for each p ∈

∪l
i=1 LCi

34: C = C ∪ {p};
35: }

end

Fig. 3. The LazyDistributedSolvingSet algorithm.

3.4 LazyDistributedSolvingSet algorithm
From the analysis accomplished in the preceding
section it follows that the total amount TD of data
transferred linearly increases with the number ` of
employed nodes. Though in some scenarios the linear
dependence on ` of the amount of data transferred
may have little impact on the execution time and on
the speedup of the method and, also, on the com-
munication channel load, this kind of dependence is
in general undesirable, since in some other scenarios
relative performances could sensibly deteriorate when
the number of nodes increases. In order to remove
this dependency, we describe in this section a vari-
ant of the basic DistributedSolvingSet algorithm previ-
ously introduced. The variant, named LazyDistribut-
edSolvingSet algorithm, employs a more sophisticated
strategy that leads to the transmission of a reduced
number of distances for each node, say kd, therefore
replacing the term `k in the expression TD of the data
transferred with the smaller one `kd, such that `kd is
O(k). This strategy, thus, mitigates the dependency on
` of the amount of data transferred, so that the relative
amount of data transferred can be approximated to

TD% ≈ %k

a
.

Moreover, the first term in Equation (2), representing
the temporal cost pertaining to the supervisor node,
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is replaced by LazyDistributedSolvingSet as follows

O (%|D| · (k log k + log n)) ,

thus relieving the temporal cost from the direct de-
pendency on the parameter `.

Figure 3 reports the LazyDistributedSolvingSet algo-
rithm. This algorithm differs from the preceding one
for the policy adopted to collect the k nearest neigh-
bors’ distances of each candidate object q computed
by each node. With this aim, an incremental proce-
dure is pursued. Several iterations are accomplished:
during each of them only a subset of the nearest
neighbors’ distances, starting from the smallest ones,
is sent by each local node to the supervisor node.
At each iteration, the supervisor node collects the
additional distances, puts them together with the pre-
viously received ones, and checks whether additional
distances are needed in order to determine the true
weight associated with the candidate objects. If it is
the case, a further iteration is performed, differently
the incremental procedure stops.

First of all, the procedure NodeCompi has to be
modified (see Figure 4 and the associated description
reported next) so that it receives in input the supple-
mental parameter k0 < k, representing the number of
smallest nearest neighbors’ distances to be returned
for each candidate object. Thus, the data structures
LNNCi returned by the procedure NodeCompi (see
line 12 of Figure 3) include only the k0 = dk

` e + 1
smallest distances to the nearest neighbors in the local
data set Di of the candidate objects in C. Lines 14-28
implement the incremental strategy above depicted.
For each candidate object q, the entry NNC[q] con-
taining its k nearest neighbors’ distances is updated
with the distances stored in the entries LNNCi[q] sent
by the local nodes during the last iteration (line 16).
Note that during the first iteration, the total number
of distances sent by the nodes is `k0 > k. If all the
distances stored in the entry NNC[q] are smaller than
the greatest distances last(LNNCi[q]) stored in the
entries LNNCi[q], for each i = 1, . . . , `, then it is the
case that NNC[q] stores the true k nearest neighbors’
distances of q in the whole data set. Indeed, since
nodes send distances in increasing order, the distances
not already sent by the generic node Ni are greater
than last(LNNCi[q]). Differently, consider the small-
est distance representing the best worst case distance.

distmin = min
i
{last(LNNCi[q])},

Then, it is the case that distmin occurs in the data
structure NNC[q] in some position, say the j-th one.
This check is accomplished in line 19 of the algorithm.
In such a case, the first j distances stored in NNC[q]
are precisely those separating q from its j first nearest
neighbors, while the remaining k− j distances stored
in NNC[q] represent an upper bound to the true
distances separating q from its (j − 1)-th to k-th

procedure NodeCompi(minOUT,C, act, k0, LNNCi, LCi, acti) {
. . .

33: LNNCi = sort(LNNCi);
34: rLNNCi = get l(LNNCi, k − k0);
35: LNNCi = get f(LNNCi, k0);
36: store (acti, Ci, rLNNCi);

}

procedure NodeReqi(u NNC, cur last, nodes, LNNCi) {
37: load (rLNNCi);
38: for each (q such that Ni ∈ nodes[q]) {
39: LNNCi[q]= get f(rLNNCi[q], du NNC[q]

|nodes[q]| e + 1, cur last[q]);
40: rLNNCi[q]= get l(rLNNCi[q], |rLNNCi[q]| − |LNNCi[q]|);
41: }
42: store (rLNNCi);

}

Fig. 4. The procedures employed in the LazyDistribut-
edSolvingSet algorithm.

nearest neighbor. The number k − j of “unknown”
distances occurring in NNC[q] is then stored in the
entry u NNC[q] of the array u NNC (see line 20).
Moreover, the upper bound NNC[q][k] to the distance
from q to its k-th nearest neighbor is stored in the
entry cur last[q] of the array cur last (see line 21).
The entry nodes[q] of the array node stores the iden-
tifiers of the nodes that could provide at least one
of the true nearest neighbor distances still unknown,
that are the nodes Ni such that the greatest distance
last(LNNCi[q]) sent in the last iteration occurs in
NNC[q] (see line 22). After having processed all the
distances received from the local nodes, for each can-
didate q and for each node stored in the entry node[q]
the master requests an additional bunch of distances
by means of the procedure NodeReq (see lines 25-26).
However, if all the entries nodes[q] are empty, the true
nearest neighbors of the candidate objects have been
collected and the iterations terminate (line 28).

NodeReq procedure. The procedure NodeReq is
shown in Figure 4, reporting also the modifications to
the procedure NodeCompi. As for the latter procedure,
lines 33-34 of Figure 2 (the last two lines) are replaced
by lines 33-36 of Figure 4, while the rest of the
procedure remains unchanged.

The procedure NodeCompi sorts the k nearest neigh-
bor’ distances of the candidate objects (line 33), inserts
into the data structure rLNNCi the k−k0 greatest dis-
tances in LNNCi (line 34) to be possibly returned in
subsequent calls of the procedure NodeReq, leaves in
LNNCi only the k0 smallest distances there included
(line 35), and stores in the local memory the number
of active objects, the candidates coming from the local
node, and the data structures rLNNCi (line 36).

For each candidate object q such that the cur-
rent node is stored in the associated entry nodes[q]
(line 38), the procedure NodeReq copies in the entry
LNNCi[q] another bunch of distances by executing
the function get f (line 39). This function returns
at most du NNC[q]

|nodes[q]| + 1e distances among the smallest
distances stored in the entry rLNNCi[q]. In particular,
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Fig. 5. DSS: (a) Speedup, (b) Ratio between the communication time and the total execution time, (c) Ratio
between the supervisor node time and the total execution time.

only the distances smaller than cur last[q], the upper
bound to the k-th nearest neighbor distance for q,
are returned. The distances included in LNNCi[q]
are then removed from rLNNCi[q] by executing the
function get l (line 40) and stored in the local mem-
ory (line 42). This terminates the description of the
procedure NodeReqi.

4 EXPERIMENTS
To check the effectiveness of the proposed approach,
we evaluated the performance of the algorithms
through several experiments on large data sets.

For the sake of brevity, in the sequel we abbreviate
the names of the algorithms by using their acronyms,
that is DSS and LDSS respectively.

In order to guarantee a great level of generality,
the algorithm is written in Java and supports com-
munication through the Java libraries implementing
the TCP sockets. As experimental platform, we used
16 workstations, each equipped with a Intel 2.26 GHz
processor and 4GB of RAM, interconnected by an
Ethernet network with a nominal rate of 100 Mbit/s.

In this section, if not otherwise stated, the values
for the parameters are n = 10, k = 50, and m = 100.
We also considered other combinations of values for
the above parameters and we experimented that the
method always exhibited a behavior similar to that
showed using the default values. See Section 4.1 for
a complete discussion on the effect of parameters.

We considered the following data sets:
• G3d is synthetic and contains 500,000 3D real vec-

tors, obtained by the union of the objects of three
3-d normal distributions having different mean
vectors and the unit matrix as covariance matrix;

• Covtype includes the quantitative attributes of the
real data set Covertype available at the Machine
Learning Repository of UCI [5]; it consists of
581,012 instances of 10 attributes;

• G2d is a synthetic collection of 1,000,000 vectors
generated from a 2-d normal distribution having
the origin as mean vector and the unit matrix as
covariance matrix;

• G2d’ is derived from G2d, it contains the same
data but the partitioning of the objects on the
local nodes is intentionally biased: all the out-
liers have been allocated to a unique local node.
G2d’ represents a worst case scenario for the
distributed outlier detection task;

• Poker is obtained from the real data set Poker-
Hands, available at UCI repository, by removing
the class label; then Poker consists of 1,000,000
instances of 10 attributes;

• 2Mass contains data from the NASA/IPAC In-
frared Science Archive2 (IRSA). Specifically, the
data set is composed of 1,623,376 instances ob-
tained from the database 2MASS Survey Atlas
Image Info of the 2MASS Survey Scan Working
Databases catalog. Each instance consists of three
quantitative attributes associated with JHK filters.

4.1 Experiments using the DSS algorithm

Now we present the results of the experiments. We
note that when the number of the nodes ` is set to 1,
the centralized version of the DSS algorithm, which
is equivalent to the SolvingSet algorithm, is executed.

Speedup and processing time. Figure 5(a) shows the
speedup S` = T1/T` obtained by using the DSS
algorithm, where Tj denotes the measured execution
time when j ≥ 1 nodes are employed. We note that,
for all the considered data sets, the algorithm scaled
very well, exhibiting a speedup close to linear. These
good performances can be explained by analyzing
the communication time and the supervisor node
processing time. As far as the communication time
is concerned, the time spent to transfer data from
the local nodes to the supervisor node during the
computation is always a small portion of the whole
execution time, as witnessed by Figure 5(b), reporting
the ratio between the communication time and the
whole execution time. As for the supervisor node
processing time, also the time spent by the supervisor

2. See http://irsa.ipac.caltech.edu/.
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Fig. 6. DSS: (a) No. of computed distances, (b) No. of relative equivalent distances, (c) No. of iterations.

node to put together the partial results returned by the
various nodes is small with respect the overall execu-
tion time, as can be observed in Figure 5(c), reporting
the ratio between the supervisor node processing time
and the whole execution time. It can be concluded that
the overall execution time is mainly determined by
the time spent to execute the core of the computation,
which is represented by the procedure NodeComp.

The table below reports the total execution time (in
seconds) for different numbers of local nodes. It shows
that the DSS algorithm, guarantees vast time savings
with respect to the centralized algorithm (` = 1).

Dataset \ ` 1 2 5 10 15
G3d 93.3 46.8 20.0 11.2 8.5
Covtype 1,080.2 516.4 230.1 126.4 96.5
Poker 1,033.4 487.8 210.1 112.3 83.3
G2d 102.1 51.7 22.1 11.9 8.1
G2d’ 102.7 52.3 22.7 12.7 8.6
2Mass 105.1 53.3 21.8 11.3 7.7

Finally, the table below reports the speedup (n = 10,
k = 10 and m = 100) for the PSC3 data set and for
three synthetic data sets having the same distribution,
but increasing size. The latter data sets are G2d,
5G2d and 10G2d, where the last two ones have been
generated in the same manner as G2d, but they consist
of 5 and 10 million instances, respectively. The results
highlight that the speedup rises with size.

Dataset \ ` 2 5 10 15
PSC 2.0 4.8 9.2 14.3
G2d 1.7 4.4 8.2 12.2
5G2d 1.8 4.5 8.8 12.8
10G2d 1.8 4.5 9.6 14.8

Number of computed distances. As described in Sec-
tion 3, the dominating operation of the procedure
NodeComp is the computation of the distance between
two objects. By observing Figure 6(a), it can be noted
that the total number of distances computed is slightly
increasing with the number of nodes. Since the total
number of distances computed is little sensitive to the
number of nodes, then the average number of dis-
tances per node scales near linearly. If the load is bal-
anced, that is, if the average number of distances per

3. PSC is an extract of the 2MASS First Incremental Release Point
Source Catalog and is composed of 6,250,000 objects of 40 attributes.

node corresponds to the actual number of distances
computed by each single node, then, from the analysis
of the communication and supervisor node time, the
speedup of the algorithm should exhibit near linear
behavior. It must be noted that each single iteration
terminates only after every node has completed its
computation. Hence, the actual number of distances
per node is related to the maximum node load, that is
to the maximum number of distances to be computed
by a single local node (this number is related to the
number of active objects in the local node). Thus, in
order to quantify the deviation from the ideal be-
havior, we employed the equivalent distances measure,
defined as

∑
i maxj{di,j}, where di,j is the number of

distances computed by node j during the ith iteration.
Figure 6(b), comparing the ideal behavior (that is,
the average number of distances per node) with the
actual one (that is, the equivalent distances measure),
shows that during the execution of the algorithm the
load is indeed almost balanced (the relative equivalent
distances is the ratio of the equivalent distances to the
average number of distances per node). Interestingly,
the analysis on G2d′ reveals that a biased distribution
of the outliers does not affect the load distribution,
since the curves of G2d and G2d′ are very close.

Solving set. We also studied the growth of the solving
set size with respect to the number of local nodes.
Figure 6(c) shows that the number of main iterations
performed by the algorithm. No significant differ-
ences with the sequential case, corresponding to the
execution for ` = 1, can be appreciated. Since at
each iteration at most m points are added to the
solving set, the size of the distributed solving set does
not vary with the number of local nodes. The table
below reports the absolute and relative solving set size
determined by the DSS algorithm.

Dataset ` = 1 ` = 15
Abs. Size Rel. Size Abs. Size Rel. Size

G3d 3,245 0.006 3,180 0.006
Covtype 25,043 0.043 25,075 0.043
Poker 14,353 0.014 14,344 0.014
G2d 2,278 0.002 2,100 0.002
G2d’ 2,290 0.002 2,105 0.002
2Mass 1,156 0.001 1,205 0.001
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It can be concluded that the solving set computed by
the DSS algorithm is of the same quality of that com-
puted by the centralized version, and, hence, it can be
usefully exploited for the outlier prediction task.

Sensitivity analysis. We have performed a sensitivity
analysis of the algorithm w.r.t. parameters n, k, and
m. Experimental results have pointed out that it is
difficult to predict the trend of the speedup when one
of these parameters is varied. This can be explained
on the light of the following observations.

By varying n and k, as a main consequence, the
number t of iterations of the algorithm is affected.

As for the parameter n, it appears that the number
of algorithm iterations is always directly proportional
to n. This can be explained by noticing that, while
the first top outliers have weight values far larger
than those associated with the majority of the data
population, by increasing n the weight associated
with the top n-th outlier becomes more and more
similar to the weights associated with inlier objects.
Hence, discriminating outliers from inliers becomes
more and more difficult and, hence, the number of
active objects at the same iteration is larger.

As for the parameter k, the trend of the number
of iterations depends on the data distribution. Specif-
ically, by varying k, the distribution of the weights
associated with data set objects is varied. Since the
best value of k, that is to say that maximally sepa-
rating outliers from inliers, depends on the data set
distribution, the number of iterations can be either
increasing or decreasing with respect to k.

As an example, the table below reports the number
of iterations on the Poker and 2Mass data sets for
different combinations of n and k for ` = 15 nodes.
Summarizing, by varying n or k the separation be-
tween outlier weights and inlier weights varies, but
while increasing n always reduces this separation and,
hence, makes the problem more difficult, for k the
trend is in general unpredictable.

Dataset
k = 50 n = 10

n k
10 50 100 25 50 75

Poker 145 209 239 132 145 157
2Mass 12 50 79 43 12 11

We recall that the absolute execution time of the
algorithm is directly proportional to the number of
iterations t. However, the speedup does not strictly
depend on the number of iterations, since both
time in charge of local nodes (which raises the
speedup) and synchronization/communication cost
(which, conversely, worsens it) are directly propor-
tional to the number of iterations. Thus, also the
speedup can be either increasing or decreasing, de-
pending on the balance of these two costs, when the
number ` of nodes is varied. The table below reports
the speedups of Poker and 2Mass for ` = 15. There are
fluctuations, but the speedup remains good for all the
combinations.

Dataset
k = 50 n = 10

n k
10 50 100 25 50 75

Poker 12.4 12.2 12.2 12.7 12.4 11.7
2Mass 13.6 13.8 12.3 14.5 13.6 14.9

As for the parameter m, we have already seen that
it is always inversely proportional to the number of
iterations. Thus, by increasing m the number t of
iterations is lowered. We recall that both the temporal
cost and the amount of data to be transferred are pro-
portional to tm. Thus, as long as tm remains constant,
the parameter m has little impact on the performances
of the algorithm. The following table reports t and the
execution time for various values of m when n = 10,
k = 50, and ` = 15. It can be seen that, for Poker, the
product tm is practically unchanged, and in fact the
algorithm exhibited in all of the three cases a similar
execution time. Conversely, as for 2Mass, the value
of the product tm is not constant and the relative
variation of the execution times is more evident.

Dataset
t Time [sec]
m m

50 100 200 50 100 200
Poker 287 145 74 86.9 83.3 76.3
2Mass 17 12 9 7.7 7.7 10.6

As for the fluctuations of the execution time when
m is varied, note that tm|D| is an upper bound to
the number of distances to be computed (recall that
distance computations associated with pairs of non-
active objects are avoided by exploiting the lower
bound minOUT ; see line 23 of Figure 2). Thus, the
parameter m influences the execution time of the
algorithm mostly when it is comparable to the size
of the solving set, that is when the associated t is
low. Indeed, in such a case, minor changes in trend of
minOUT (recall that minOUT is updated at the end of
each main iteration) could sensibly vary the effective
number of distances computed. This suggested us to
set m to a reasonably small value as, e.g., m = 100,
that is the value we have used in our experiments.

Comparison with other algorithms. Here we compare
our algorithm with Parallel Bay’s Algorithm [17], which
is the parallel version of the distance-based outlier
detection algorithm introduced in [6]. The comparison
with this method is informative since it adopts a
definition of outlier coherent with that employed here.
We carried out the comparison on the largest data
set considered in [17], that is the Covtype data set
composed of 581,012 instances having 54 attributes
each. Actually, [17] considered also other three data
sets, but we do not take into account them since they
are excessively small (indeed, they are composed of
less than 50,000 instances). The table below shows
the speedup exhibited by the two algorithms for the
combination of parameters used in [17], that is n = 10
and k = 10. Except for the case of two local nodes, the
DSS algorithm overcomes the Parallel Bay’s one. For
example, for ` ≥ 7, the speedup of the former method
is more than twice the speedup of the latter one.
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Fig. 7. LDSS: (a) Mean number of distances sent
per candidate object divided by k, (b) Mean number
of NodeReq executions per NodeComp call.

Algorithm \ ` 2 3 4 5 6 7 8

DSS 1.89 2.80 3.68 4.56 5.31 6.06 6.81
Parallel Bay 2.00 2.26 2.48 2.70 2.80 2.86 2.90

4.2 Experiments using the LDSS algorithm

Before illustrating the experimental results, we recall
that the DSS and the LDSS algorithms are equivalent
from the point of view of the computed solution,
since the incremental strategy exploited by the LDSS
algorithm to collect distances does not alter the con-
struction of the distributed solving set.

Number of sent neighbors’ distances. The primary goal of
the LDSS algorithm is to achieve a drastic reduction
of the number of neighbors’ distances to be collected
by the supervisor node in order to determine the
k smallest ones. The table below shows the mean
number of neighbors’ distances per candidate object
collected by the supervisor node. As for the DSS al-
gorithm, this number is always identical to `k (k = 50
in this case) and, hence, only one row (that is the
first one) is associated with DSS in the table. The
values of the table confirm that the above mentioned
goal is fully reached. As a matter of fact, we can
see that the number of distances transferred by the
LDSS algorithm is much smaller than that of the
DSS algorithm. Moreover, the growth of the former
number even decreases with the number of local
nodes. As an example, for ` = 15, the number of
distances transferred by the DSS algorithm is above
five times that of the LDSS algorithm.

Dataset \ ` 1 2 5 10 15

DSS all 50 100 250 500 750

LDSS

G3d 50.0 63.7 91.4 114.5 129.2
Covtype 50.0 57.8 76.8 98.1 112.3
Poker 50.0 57.9 74.0 91.4 104.3
G2d 50.0 69.9 104.2 129.5 142.1
G2d’ 50.0 70.6 104.0 129.1 142.7
2Mass 50.0 69.8 101.1 126.9 142.2

Figure 7(a) reports the mean number of distances
sent per candidate object by the LDSS algorithm di-
vided by k. The division by k is accomplished since k
represents the minimum number of distances needed
per candidate object. Differently from the DSS algo-
rithm, according to which the number of transferred
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Fig. 8. LDSS vs. DSS: Amount of data (in MB) (a) sent
and (b) received by the supervisor node.

distances per candidate object is always equal to `k,
the LDSS algorithm transfers only a small fraction
of this worst case number. For instance, for 15 local
nodes, the number of transferred distances ranges
from 2.09k (for Poker data set) to 2.86k (for G2d′

data set). This result is consistent with the objective
of this LDSS, that is to replace the term `k in the
expression of the relative amount TD% of transferred
data, with a term `kd which is O(k) term. Indeed, from
the empirical validation the approximation `kd ≈ 3k
holds. Note that the growth of the ratio kd

k appears
to slow down with the number of nodes. Hence, we
expect this relationship is satisfied even for number
of local nodes larger than those considered in the
experiments here reported.

Amount of transferred data. Clearly, this reduced num-
ber of distances is achieved by the LDSS algorithm
at the expense of additional communications, during
which the supervisor node sends supplementary data
to the local nodes in order to request only useful dis-
tances. Figure 7(b) highlights that the number of ad-
ditional communications, corresponding to NodeReq

executions, is quite low. In fact, on the average, the
number of such executions is below two.

Figures 8(a) and 8(b) compare the reduction of data
sent from the local nodes to the supervisor node
with the increase of data sent from the supervisor
node to the local nodes (solid and dotted lines refer
to DSS and LDSS, respectively. Since all the data
sets exhibited the same behavior, for the sake of
readability we show only the experimental results
concerning the Poker and the G2d data sets (the same
consideration holds for some of the figures reported in
the sequel). It is clear that in LDSS the amount of sup-
plementary data sent by the supervisor node during
the incremental procedure in order to collect the true
k nearest neighbors’ distances (Figure 8(a)) is much
smaller than the amount of data saved during the
communications to the supervisor node (Figure 8(b)).

Processing time. Figure 9(a), showing the ratio between
the communication time and the total execution time,
summarizes the impact of the communication on the
overall execution time of the method. The figure
points out that by using the LDSS algorithm the
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Fig. 9. LDSS vs. DSS: (a) Communication time and
(b) supervisor processing time normalized w.r.t. the
total execution time.

impact of the communication phase on the execu-
tion time is appreciably reduced. We recall that the
strategy implemented in the LDSS algorithm requires
some additional operations to be performed for col-
lecting distances due to the incremental procedure.
Figure 9(b), reporting the ratio between the supervisor
processing time and the total processing time, shows
that processing time of the supervisor node decreases
when the LDSS algorithm is employed. This can be
explained, by noticing that the time needed to ac-
complish these additional operations is much smaller
than the time savings resulting from the fact that
the supervisor has to handle a smaller number of
distances coming from the local nodes.

The table below shows the equivalent local node
processing time; it is clear that the additional op-
erations to be accomplished during the incremental
procedure are so fast that the processing time remains
practically unchanged. As a matter of fact, in the table
the values for LDSS are very close to those for DSS.

Dataset \ ` 1 2 5 10 15

DSS Poker 1033.36 486.59 207.79 107.60 75.42
G2d 102.06 51.50 21.73 11.27 7.21

LDSS Poker 1033.36 486.62 207.83 107.64 75.46
G2d 102.06 51.51 21.74 11.28 7.22

Speedup. As above noticed, the advantages of the
LDSS algorithm are more evident when a large
number of local nodes is available (e.g. consider a
distributed data set partitioned on a large number of
local sites), or a large value value for k is employed, or
when the communication infrastructure offers lower
performances in terms of transfer bit rate. In all these
cases, the communication increases its impact on the
overall performances and, hence, the LDSS algorithm
offers potentially larger advantages.

Figure 10(a) shows the percentage increase of the
speedup of the LDSS algorithm with respect to that
of the DSS algorithm for a number of local nodes
ranging from 1 to 15. For the sake of completeness,
next we report the total execution times of LDSS for
` = 15 nodes: 8.0 seconds for G3d, 91.4 seconds for
Covtype, 79.5 seconds for Poker, 7.8 seconds for G2d,
8.2 seconds for G2d’, and 7.5 seconds for 2Mass.

In order to understand the behavior with respect
to the number of neighbors, Figure 10(b) reports the

same parameter above considered for different values
of k (25 ≤ k ≤ 75) when 15 local nodes are considered.

Moreover, as far as the the bandwidth of the
network connecting the nodes is concerned, we re-
executed the experiment in Figure 10(a) by taking into
account a network having a lower transfer bit rate.
Figure 10(c) shows that the difference between the
two algorithms is much more marked when a slower
network is employed, in this case having a speed of
20Mbit/s, representing a scenario where the nodes
are geographically distributed and interconnected by
a relatively low performance network infrastructure.

Summarizing, the results illustrated in this section
confirm that the LDSS algorithm noticeably reduces
the amount of data transferred over the network and,
at the same time, achieves some improvements on the
performance of the basic DSS algorithm. The amount
of these improvements varies with the execution set-
tings under consideration, ranging from about the
10% for increasing k or ` values, to about the 25%
in low bit rate transfer networks.

5 CONCLUSIONS AND FUTURE WORK
We presented the DistributedSolvingSet algorithm, a
distributed method for computing an outlier detec-
tion solving set and the top-n distance-based outliers
according to the definitions given in [4], [2].

We proved that the original centralized algorithm
can be extended to work in distributed environments
and that the proposed solution (i) produces an overall
speedup close to linear w.r.t. the number of computing
nodes and (ii) scales well for increasing number of
nodes w.r.t. both the computation in the coordinator
node and the data transmission. For this reason, we
claim that the solution can be useful in two classes of
cases: (i) when data reside on distributed nodes, so
sending all data to a coordinator can be avoided and
safety increased without performance degradation;
(ii) when distributed computing power is available
the good speedup guarantees an optimal exploitation
of computing facilities and a better throughput.

To summarize a learned lesson, we started from an
algorithm founded on a compressed form of data (the
solving set) and derived a parallel/distributed data
version by computing local distances and merging
them at a coordinator site in an iterative way. The
”lazy” version, which sends distances only when
needed, showed the most promising performance.
This schema could be useful also for the parallelized
version of other kinds of algorithms, such as those
based on SVMs. Additional improvements could be
to find rules for an early stop of main iterations or
to obtain a ”one-shot” merging method of the local
information with some approximation guarantees.

Acknowledgements. We would like to thank D. Tira-
ferri and R. Negro for their meticulous work on the
implementation of the algorithms.
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