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Condensed Nearest Neighbor
Data Domain Description

Fabrizio Angiulli

Abstract—A simple yet effective unsupervised classification rule to discriminate between normal and abnormal data is based on
accepting test objects whose nearest neighbors distances in a reference data set, assumed to model normal behavior, lie within a
certain threshold. This work investigates the effect of using a subset of the original data set as the reference set of the classifier. With
this aim, the concept of a reference consistent subset is introduced and it is shown that finding the minimum cardinality reference
consistent subset is intractable. Then, the CNNDD algorithm is described, which computes a reference consistent subset with only two
reference set passes. Experimental results revealed the advantages of condensing the data set and confirmed the effectiveness of the
proposed approach. A thorough comparison with related methods was accomplished, pointing out the strengths and weaknesses of
one-class nearest-neighbor-based training set consistent condensation.

Index Terms—Classification, data domain description, data condensation, nearest neighbor rule, novelty detection.

✦

1 INTRODUCTION

Data domain description, also called one-class classi-
fication, is a classification technique whose goal is to
distinguish between objects belonging to a certain class
and all the other objects of the space. The task that needs
solving in one-class classification is the following: given
a data set of objects, called training or reference set,
belonging to a certain object space, find a description
of the data, i.e. a rule partitioning the object space into
an accepting region, containing the objects belonging to
the class represented by the training set, and a rejecting
region, containing all the other objects. Data domain
description is related to outlier or novelty detection, as
the description of the data is then used to detect the
objects deviating significantly from the training data.
Given a data set, also called reference set, of objects

from an object space, and two parameters k and θ, we
call Nearest Neighbor Domain Description rule (NNDD)
the classifier that associates a feature vector δ(p) ∈ R

k

with each object p. The elements of δ(p) are the distances
of p to its first k nearest neighbors in the reference set,
and the classifier accepts p iff δ(p) belongs to the hyper-
sphere (according to one of the Lr Minkowski metrics,
r ∈ {1, 2, . . . ,∞}) centered in the origin of Rk and having
radius θ, i.e. iff ‖δ(p)‖r ≤ θ.
The contribution of this work can be summarized as

follows. The concept of reference consistent subset for the
NNDD rule, which is a subset of the reference set that
correctly classifies all the objects in the reference set, is
defined and the relationship between the generalization
of the NNDD classifier and size of the reference set
is pointed out, concluding that replacing the original
reference set with a reference consistent subset improves
space requirements, response time, and generalization. It
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is shown that finding the minimum cardinality reference
consistent subset is a computationally demanding task,
and the algorithm CNNDD is provided that computes a
reference consistent subset with only two data set passes.
Experimental results show that the CNNDD algorithm
achieves notable training set reduction and maintains or
even improves the accuracy of the NNDD rule. Then
the CNNDD algorithm is compared with related ap-
proaches, pointing out the strengths and weaknesses of
one-class nearest neighbor-based training set consistent
condensation. To conclude, robustness to noise and out-
liers is investigated.
The rest of the paper is organized as follows. In Section

2 relationship between the approach here proposed and
relevant literature is presented. In Section 3 the NNDD
rule and the concept of reference consistent subset are
formally defined. In Section 4 the algorithm CNNDD
is described. Section 5 reports experimental results and
comparison with related methods. Finally, in Section 6
conclusions are drawn.

2 RELATED WORK

The literature related to this work can be grouped into
three main categories: nonparametric binary classifica-
tion using the nearest neighbor rule, one-class classifi-
cation, and outlier detection. Next, these approaches are
briefly described.
In the nonparametric binary classification problem

there is available a training set {(x1, y1), . . . , (xn, yn)} of
n pairs (xi, yi), 1 ≤ i ≤ n, where xi is an object from
an object space and yi ∈ {−1, 1} is the corresponding
class label. The nearest neighbor rule (1-NN-rule) [12]
assigns the label yj to a new object q, where xj is the
nearest neighbor of q in {x1, . . . , xn} according to a
certain metric. This rule is based on the property that the
nearest neighbor xj of q contains at least half of the total
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discrimination information contained in an infinite-size
training set [6], [23], [8]. The generalization of the 1-NN-
rule, the k-NN-rule, in which a new pattern q is classified
into the class with the most members present among
its k nearest neighbors in {x1, . . . , xn}, has the property
that its probability of error asymptotically approaches
the Bayes error [9]. Since the k-NN-rule requires all the
previously classified data to be stored, several techniques
to reduce the size of the stored data have been proposed.
Among these techniques, training set consistent ones aim
at selecting a subset of the training set that classifies the
remaining data correctly [15], [7], [4], [1]. These methods
have the same goal as the CNNDD, but the subset
they extract is consistent for the k-NN classification
rule rather than for the NNDD rule. Thus, it is worth
pointing out that, since the two decision rules are greatly
different, the consistent subsets of the two rules are
of a different nature. Even disregarding the fact that
the k-NN-rule requires labelled data while the NNDD
works on unlabelled data, there is no way of obtaining
a subset consistent for the latter rule starting from a
subset consistent for the former, or vice versa. Indeed,
consider that objects belonging to one type of subset
do not usually belong to the other type. This is because
the condensed k-NN-rule searches for the objects mostly
contributing to form the boundary between the classes
in the data set, while the condensed NNDD rule searches
for objects distributed along the data set shape and
central with respect to the overall population.
The one-class classification task has been previously

introduced. There are several approaches to one-class
classification. In the nearest neighbor one-class classifica-
tion method NN-d [25], a test object p is accepted if the
distance to its nearest neighbor q in the training set is less
or equal than the distance from q to its nearest neighbor
in the training set. This measure is comparable with the
Local Outlier Factor [3] used to detect outliers. The k-
center method covers the data set with k balls with equal
radii [28]. Ball centers are placed on training objects such
that the maximum distance of all minimum distances
between training objects and the centers is minimized.
Placing balls is similar to solving the k-center problem
introduced in the discrete location theory, where, given a
set of cities, one has to pick k cities and build warehouses
in them so as to minimize the maximum distance of
any city from its closest warehouse (see for an example
[16]). One-class classification techniques based on Sup-
port Vector (SV) Machines extend the SV algorithm to
the case of unlabelled data [21], [24] (see Section 5.2
for a better description of this technique). In order to
properly model outlier or noise possibly in the training
set, model-based approaches, such as the one presented
in [20], assume that the data set consists of a mixture of
two populations, a regular population with distribution
µREG and an outlier population with distribution µOUT .
Assuming that these distributions are members of given
parametric families, the goal is that of estimating their
parameters. There are many other interesting approaches

to one-class classification. The reader is referred to [26]
for a comprehensive treatment.
Research on outlier detection in data mining focuses

on providing techniques for identifying the most devi-
ating objects in an input data set. Distance-based outlier
detection was introduced in [17]: a point in a data
set is a DB(c, d)-outlier with respect to parameters c
and d, if at least fraction c of the points in the data
set lies greater than distance d from it. This definition
generalizes several discordancy tests to detect an outlier
given in statistics and it is suitable when the data set
does not fit any standard distribution. The definition of
[19] is closely related to the previous one: given a k and
n, a point p is an outlier if no more than n−1 other points
in the data set have a higher value of Dk than p, where
Dk(p) denotes the distance of the kth nearest neighbor of
a point p. In order to take into account the sparseness of
the neighborhood of a point, [2] considers the measure
wk(p) for each point p, denoting the sum of the distances
to its k nearest neighbors. [11] provides further algo-
rithms for distance-based anomaly detection. We point
out that the measure ‖δ(p)‖r here used, generalizes all
the distance-based measures, since Dk(p) = ‖δ(p)‖∞,
and wk(p) = ‖δ(p)‖1.

3 THE NNDD RULE

In the following a set of objects is denoted with U ,
with d a distance on U , D a set of objects from U , k
a positive integer number, θ a positive real number, and
r a Minkowski metric Lr, r ∈ {1, 2, . . . ,∞}.
Given an object p of U , the kth nearest neighbor

nnD,d,k(p) of p in D according to d is the object q of
D such that there exists exactly k− 1 objects s of D with
d(p, s) ≤ d(p, q). If p ∈ D, then nnD,d,1(p) = p. The k
nearest neighbors distances vector δD,d,k(p) of p in D is

δD,d,k(p) = (d(p, nnD,d,1(p)), . . . , d(p, nnD,d,k(p))).
1

The Nearest Neighbor Domain Description rule (NNDD
for short) NNDDD,d,k,θ,r according to D, d, k, θ, r, is the
function from U to {−1, 1} such that

NNDDD,d,k,θ,r(p) = sign(θ − ‖δD,d,k(p)‖r),

where sign(x) = −1 if x < 0, and sign(x) = 1 otherwise.
Intuitively, the NNDD rule returns 1 when the object

belongs to the class represented by D, while it returns
−1 when the object does not belong to that class. In the
special case k = 1 and θ = 0, the rule accepts an object p
iff p ∈ D, while for k = 1 and θ > 0, the rule accepts an
object if it lies in the neighborhood of radius θ of some
object in D.
Let f be NNDDD,d,k,θ,r. The accepting region R(f) of f

is the set {x ∈ U | f(x) = 1}. The rejecting region R(f) of
f is the set U \ R(f). An object x ∈ R(f) is said to be
an outlier. The empirical risk, or training set error, of the
NNDD classifier f is the quantity

1. If there are less than k objects in D, then (the last) k−|D| elements
of δD,d,k(p) are equal to +∞.
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Remp(f) = |D∩R(f)|
|D| .

The empirical risk is directly proportional to the value
of k and inversely proportional to the value of θ. Indeed,
‖δD,d,k−1(p)‖r ≤ ‖δD,d,k(p)‖r, for k > 1. Remp(f) is
certainly zero for k = 1 or for arbitrarily large values
of θ.
When the reference set D is large, space requirements

to store D and time requirements to find the nearest
neighbors of an object in D increase. In the spirit of
the reference set thinning problem for the k-NN-rule
[15], [27], next the concept of NNDD reference consistent
subset is defined, and then it is shown that finding a
minimum NNDD reference consistent subset is NP-hard.
An NNDD reference consistent subset of D w.r.t. d, k, θ, r,

is a subset S of D such that

(∀p ∈ D)(NNDDD,d,k,θ,r(p) = NNDDS,d,k,θ,r(p)),

i.e. a subset of D that correctly classifies the objects in
D.
The complexity of finding a minimum reference con-

sistent subset is related to the complexity of the fol-
lowing decision problem: given an integer number m,
1 ≤ m ≤ |D|, the NNDD minimum reference consistent
subset problem 〈D, d, k, θ, r,m〉 is: is there an NNDD
reference consistent subset S of D w.r.t. d, k, θ, r such
that |S| ≤ m ?

Theorem 1. Let r ∈ N
+ denote a finite Minkowski

metrics Lr. Then the 〈D, d, k, θ, r,m〉 problem is NP-
complete.

Proof. (Membership) Given a subset S of D, having size
|S| ≤ m, it can be checked in polynomial time that, for
each p ∈ D, NNDDD,d,k,θ,r(p) = NNDDS,d,k,θ,r(p).
(Hardness) The proof is by reduction to the Dominating

Set Problem [14]. Let G = (V,E) be an undirected graph,
and let m ≤ |V | be a positive integer. The Dominating Set
Problem is: is there a subset U ⊆ V , called dominating set
of G, with |U | ≤ m, such that for all v ∈ (V − U) there
exists u ∈ U with {u, v} ∈ E ?
Let G = (V,E) be an undirected graph. Define the

metric dV on the set V of nodes of G as follows:
dV (u, v) = 1, if {u, v} ∈ E, and dV (u, v) = 2, otherwise.
Let θk,r be (1+2r(k−1))1/r. Now we prove that G has a
dominating set of size m iff 〈V, dV , k, θk,r, r,m〉 is a “yes”
instance.
First, we note that, for each v ∈ V , ‖δV,dV ,k(v)‖r ≤

(0 + 2r(k − 1))1/r ≤ θk,r.
(⇒) Suppose that G has a dominating set U such that

|U | ≤ m. Then U is a reference consistent subset of V
w.r.t. dV , k, θk,r, r. Indeed, let v a generic object of V . If
v ∈ U , then ‖δU,dV ,k(v)‖r ≤ (0 + 2r(k − 1))1/r < θk,r,
otherwise v 6∈ U and ‖δU,dV ,k(v)‖r ≤ (1+ 2r(k− 1))1/r ≤
θk,r.
(⇐) Suppose that there is a reference consistent subset

U of V such that |U | ≤ m. By contradiction, assume that
there is v ∈ (V − U) such that, for each u ∈ U , {v, u} 6∈

Algorithm CNNDD(DataSet,d,k,θ,r)
// — First data set pass —
InRefSet = ∅; OutRefSet = ∅;
for each (pi in DataSet)
δ = ∅;
for each (pj in OutRefSet)
Update(δ,d(pi, pj), pj);
Update(δtj, d(pi, pj), pi);

for each (pj in InRefSet)
if (‖δ‖r > θ) Update(δ,d(pi, pj), pj);

if (‖δ‖r > θ)
for each (pj in OutRefSet)
Update(δj,d(pi, pj), pi);
if (‖δj‖r ≤ θ)
OutRefSet = OutRefSet− {pj};
InRefSet = InRefSet ∪ {pj};

Update(δ, 0, pi);
if (‖δ‖r > θ) OutRefSet = OutRefSet ∪ {pi}
else InRefSet = InRefSet ∪ {pi};

// — Second data set pass —
RefSet = InRefSet ∪OutRefSet;
for each (pi in (DataSet−RefSet))
for each (pj in OutRefSet) if (‖δtj‖r > θ)
if (i < j) Update(δtj,d(pi, pj), pi);

// — Reference set augmentation —
IncrRefSet = ∅;
for each (pj in OutRefSet) if (‖δtj‖r ≤ θ)
for each (pi in IncrRefSet) Update(δj,d(pj , pi), pi);
while (‖δj‖r > θ)
Let pi be the object of (δtj − δj) with the
minimum value of d(pi, pj);

Update(δj, d, pi);
IncrRefSet = IncrRefSet ∪ {pi};

RefSet = RefSet ∪ IncrRefSet;
return(RefSet);

Fig. 1. The CNNDD rule.

E. Then, ‖δU,dV ,k(v)‖r ≥ 2k1/r > θk,r, and U is not a
reference consistent subset of V . It follows immediately
that U is a dominating set for G. �

Theorem 1 also holds for the special case k = 1 and
r = ∞. It follows immediately from Theorem 1 that
the problem of computing the minimum size reference
consistent subset is NP-hard.

Before concluding the section, the concept of sample
compression scheme is recalled. A sample compression
scheme is defined by a fixed rule σ : D 7→ σ(D) for
constructing a classifier from a given set of data. Given
a training set D, it is compressed by finding the smallest
subset (the compression set) S ⊆ D for which the
classifier σ(S) correctly classifies the whole set D. It is
known that the size of a sample compression scheme can
be used to bound generalization [18], [13].

It can be finally concluded from the discussion above,
that replacing the reference set D with a reference con-
sistent subset S of D has a twofold usefulness: both
response time and generalization of the classifier are
improved.
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4 THE CONDENSED NNDD RULE

In this section the algorithm CNNDD is described. This
algorithm computes a reference consistent subset for the
NNDD rule with only two data set passes.
The algorithm, shown in Figure 1, receives in input

the dataset DataSet and parameters d, k, θ, and r,
and outputs a reference consistent subset RefSet. Let f
denote the classifier NNDDDataSet,d,k,θ,r. We recall that
RefSet must be such that, for each p of DataSet, the
property

f(p) = NNDDRefSet,d,k,θ,r(p) (1)

holds. InRefSet and OutRefSet are sets used to par-
tition the objects of the reference consistent subset
RefSet as described in the following. Each object pj in
OutRefSet has associated two heaps, δj and δtj , storing,
respectively, the k nearest neighbors of pj in RefSet, and
the k nearest neighbors of pj in DataSet. Objects stored
in InRefSet have no heaps associated.

1st phase: first dataset pass. During this step, the
set OutRefSet stores the objects of RefSet such that
‖δj‖r = ‖δRefSet,d,k(pj)‖r > θ, i.e. the objects of the
reference set which are rejected by the NNDD rule, while
InRefSet contains the remaining objects of RefSet.
Furthermore, the heap δ, associated with the current

data set object pi, stores the k nearest neighbors of pi in
RefSet. Hence, ‖δ‖r = ‖δRefSet,d,k(pi)‖r.
For each incoming data set object pi, first of all, the

distances among pi and the objects pj of OutRefSet are
computed and the heaps δtj are updated. Next, until the
value ‖δ‖r remains above the threshold θ, the distances
among pi and the objects pj of InRefSet are computed.
After having compared pi with the objects in

OutRefSet and InRefSet, if ‖δ‖r remains above θ, then
pi is inserted in RefSet.2 In this case, the heap δ is
updated with the object pi, and the heaps δi and δti
associated with pi are set equal to δ. Furthermore, the
heaps δj associated with the objects already contained
in OutRefSet must be updated since now pi belongs to
RefSet: if, after updating δj , the value ‖δj‖r becomes
less or equal to θ, then the object pj is removed from
OutRefSet and inserted into InRefSet. In this case
the heaps δj and δtj are no longer useful and can be
discarded.
RefSet = OutRefSet ∪ InRefSet being a subset of

DataSet, then it is the case that ‖δDataSet,d,k(p)‖r ≤
‖δRefSet,d,k(p)‖r. Thus, the points p of DataSet not
stored in RefSet, are such that ‖δDataSet,d,k(p)‖r ≤
‖δRefSet,d,k(p)‖r ≤ θ, and Property (1) is guaranteed
for these objects. Therefore, at the end of the first scan,
the objects of the data set not belonging to RefSet are
correctly classified by it through the NNDD rule.

2. Note that, as long as there are less than k objects in the reference
set RefSet, the condition ‖δ‖r > θ is always satisfied, since at least
one element of the vector δ is equal to +∞, by definition of k nearest
neighbors distances vector.

Furthermore, for each p ∈ R(f), θ <
‖δDataSet,d,k(p)‖r ≤ ‖δRefSet,d,k(p)‖r, and, hence,
RefSet (OutRefSet to be more precise) contains the set
R(f).

2nd phase: second dataset pass. The first dataset pass
is not sufficient to assure consistency of the set RefSet,
since this set could contain objects which are misclas-
sified by RefSet itself. It could be the case that an
object belonging to OutRefSet, and hence rejected by
the current RefSet, is not an outlier.
Indeed, let pj stored in OutRefSet at the end of the

first scan. Unfortunately, ‖δtj‖r > θ does not imply that

pj ∈ R(f), as pj was not compared with all the data set
objects during the first data set pass. Thus, in order to
establish whether ‖δDataSet,d,k(pj)‖r is greater than θ, a
second data set scan is performed.
For each pj ∈ OutRefSet, the heap δtj is updated

in order to compute the exact value of δDataSet,d,k(pj),
by comparing pj with all the objects pi in (DataSet −
RefSet) such that i < j, i.e. with the objects preceding
pj that are not stored in RefSet. In fact, a generic object
pj of OutRefSet was compared, during the first scan,
exactly with all the objects pi of DataSet, j < i, and
with all the objects {pi ∈ RefSet | i < j}.

3rd phase: reference set augmentation: The third phase
of the algorithm is introduced to guarantee Property (1)
for the objects stored in OutRefSet at the end of the first
phase, but which are determined to be inliers at the end
of the second phase.
To this aim, the set RefSet is augmented with the set

IncrRefSet until consistency is achieved. In particular,
for each pj ∈ OutRefSet such that ‖δDataSet,d,k(pj)‖r ≤
‖δtj‖r ≤ θ, i.e. such that it is not an outlier, IncrRefSet
is augmented with some nearest neighbors of pj , until
‖δRefSet∪IncrRefSet,d,k(pj)‖r goes down to the threshold
θ.
We note that at the end of the algorithm, the objects

in OutRefSet such that ‖δtj‖r > θ are the outliers of
DataSet. This terminates the description of the CNNDD
algorithm.

The CNNDD rule is suitable for disk-resident data sets,
as it tries to minimize the number of I/O operations
performing only two data set passes. As for the spatial
cost of the CNNDD rule, it isO(|RefSet|·k), owing to the
space needed to store heaps associated with objects in
OutRefSet. The temporal cost is O(|RefSet| · |DataSet| ·
(d+log k)), where d is the cost of computing the distance
between two objects, and log k is the cost of updating a
heap of k elements. The above-stated cost is a worst case,
but usually each data set object is compared only with a
fraction of the objects in the reference subset. Thus, the
temporal cost of the CNNDD rule depends on the size of
the computed reference subset and it is subquadratic in
general, while it becomes quadratic when the reference
subset consists of all the data set objects, i.e. if we set
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θ = 0. As shown in the following section, for values of
θ of interest, the reference consistent subset is composed
of a fraction of the data set objects.

5 EXPERIMENTAL RESULTS

In this section experiments involving the CNNDD rule
are reported. Before starting, next the data sets employed
in the experiments are described. All the data sets are
from the UCI Machine Learning Repository [10]3, except
for the Checkerboard data set:

• Checkerboard: it is a synthetical data set composed
of 2,000 randomly generated points of the unit
square partitioned into two classes representing the
cells of a 4× 4 checkerboard.

• Image segmentation: contains 2,310 objects repre-
senting 3×3 pixel regions obtained from a database
of outdoor images. Each object has 19 continuous
attributes. The objects are partitioned into seven
classes, each composed of 330 objects: Brickface, sky,
foliage, cement, window, path, and grass.

• Ionosphere: consists of radar data collected by a
system in Goose Bay, Labrador. The 351 objects
of this data set have 34 continuous attributes and
are partitioned into two classes: Good (225 objects,
associated with instances showing evidence of some
type of structure in the ionosphere), and bad (126
objects).

• Iris: this data set contains three classes of 50 in-
stances each. Each class refers to a type of iris plant:
Setosa, Vericolour, and Virginica. The objects have
four attributes representing the length and width of
both sepal and petal.

• Letter recognition: the instances of this data set
have 16 numerical attributes representing statistical
moments and edge counts associated with black
and white images of the 26 capital letters in the
English alphabet. The character images were based
on 20 different fonts and each letter was randomly
distorted to produce a total of 20,000 images. The
objects in the data set are partitioned into 26 classes
associated with the capital letters of the alphabet.
Each class contains approximately the same number
of instances.

• Satellite image: consists of 6,435 instances (obtained
by merging both the training and the test set) gen-
erated from Landsat Multi-Spectral Scanner image.
Each object has 36 attributes consisting of multi-
spectral values of pixels in 3×3 neighborhoods in a
satellite image. The class label is associated with the
central pixel, and may be one of the following: red
soil (1,533 objects), cotton crop (703 objects), grey soil
(1,358 objects) damp grey soil (626 objects), soil with

3. Data sets were, somewhat randomly, selected among those whose
objects are encoded as vectors of numeric attributes (since the CNNDD
implementation we had available manipulates only these kinds of
object).

vegetation stubble (707 objects), and very damp grey
soil (1,508 objects).

• Shuttle: this data set was used in the European
Statlog project. It contains 8 attributes and 43,500
instances. Approximately 80% of the data belongs
to the class Rad Flow, that was assumed to represent
the normal class, while the other instances belong
to six different classes, that were merged to obtain
a single exceptional class.

• Vehicle: the features of this data set were extracted
from the silhouettes of four types of vehicles. There
are 18 attributes for each object. The data set consists
of 846 object partitioned into the following four
classes of vehicles: Opel (218 objects), Saab (217
objects), bus (199 objects), and van (212 objects).

• Wine: these data are the results of a chemical anal-
ysis of wines grown in the same region in Italy but
derived from three different cultivars (representing
the three classes of the data set). The analysis de-
termined the quantities of 13 constituents found in
each of the three types of wines (the attributes of
the objects). The objects are partitioned as follows:
59 objects into class 1, 71 objects into class 2, and 48
objects into class 3.

The experiments are organized as follows. First of all, the
behavior of the CNNDD is studied. Then, the CNNDD
rule is compared with some one-class classification meth-
ods, namely the NN-d method, the k-center method,
and the one-class SVM algorithm. Finally, the effect of
Minkowski’s metric r used to compute the norm of the
k nearest neighbors distances vector, and robustness to
noise and outliers is investigated. In all the experiments,
if not specified otherwise, the Euclidean distance was
used, while the parameter r of the CNNDD method was
set to 1.

5.1 The effect of condensing the data set

In this section the effect of condensing the reference set
for the NNDD rule is investigated. Several experiments
were performed. In each experiment, one of the data set
classes above described was considered the normal one,
while the other classes of the same data set formed the
abnormal class.
During each experiment, the value of the parameter k

was varied between 1 and 10, and for each distinct value
of k, the parameter θ was varied in the range [0, θmax].
The value θmax depends on the data set considered.
For any combination of the parameters k and θ, the

empirical error, the false positive rate, and the detection
rate of both the NNDD and CNNDD rules, and the size
of the consistent reference subset, were computed.
The false positive rate (f.p., for short, in the following)

is the fraction of normal objects rejected by the classifier.
The detection rate (d.r., for short, in the following) is the
fraction of abnormal objects rejected by the classifier.
It must be recalled that, since it is assumed that

the data set is composed only of normal objects, the
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Fig. 2. Comparison between the CNNDD and the NNDD rules.
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abnormal objects are unknown at learning time. Both
false positive rate and detection rate were computed by
10-fold cross-validation.
Some of the experiments executed are reported in

Figure 2 (only one class for data set, since the behavior
of the method on the other classes was analogous, and
those for k = 1 and k = 5, in order to show the effect
of increasing the value of the parameter k). The x axis
reports the threshold value θ, while the y axis varies
between 0 and 1, and reports the false positive rate, the
detection rate, the empirical error, and the normalized
size of the reference consistent subsets.
Solid and dotted lines represent the false positive rate

and the detection rate of the CNNDD rule respectively.
Dashed and dash-dotted lines represent the false positive
rate and the detection rate of the NNDD rule. The em-
pirical error is represented by the dashed pointed lines.
Finally, the solid pointed lines report the normalized
size of the reference consistent subset computed by the
CNNDD rule.
From these figures, it is clear that, for relatively large

values of parameter θ, the CNNDD rule noticeably im-
proves the detection rate over the NNDD rule with a
little loss, or even with no loss, of false positive rate.
Furthermore, in the same range of values of θ, the
training set compression achieved by using the CNNDD
rule is noticeable. Depending on the data set of interest,
and on the desired trade-off between detection rate and
false positive rate, the size of the reference consistent
subset ranges from a few percent of the overall training-
set up to 10%–20% of the training-set objects. It can be
thus concluded that the consistent reference subset guar-
antees remarkable reference set size reduction. The best
trade-off between classifier accuracy and compression
ration is achieved in the curve elbow of the false positive
rate.
Furthermore, as expected, when θ approaches zero,

both the false positive rate and the detection rate ap-
proach one, while the consistent reference subset com-
puted by the CNNDD rule tends to contain all the data
set objects, as they are almost all outliers.
By observing Figure 2 it can be concluded that, when

a certain value of false positive rate is fixed, by using a
value for parameter k greater than one may improve the
detection rate achievable at the expense of an increase in
the size of the reference consistent subset.
Interestingly, it can be noticed that, for example, on

the Image segmentation path data set, for k = 5 and θ = 2
the CNNDD method achieves a detection rate of 0.984,
while the detection rate of the NNDD method was about
0.907, with practically no loss of false positive rate (0.015
of CNNDD versus 0.012 of NNDD) and a reference set
which is less than 10% of the whole data set. As a further
example, consider the Wine class 1 data set for k = 5
and θ = 4, where the CNNDD improves the detection
rate from 0.575 of the NNDD rule to about the 0.948 by
employing a subset of only 11% of the data set. Also,
consider the Letter recognition data set for θ ∈ [20, 40]
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Fig. 3. How the compression ratio and the prediction
accuracy vary with the training set size on a uniform data
set.

and k = 5. The same behavior can be observed in
other experiments shown and also in the experiments
concerning the data set classes not reported here owing
to space limitations.

If both normal and abnormal data are provided, a
suitable combination of values for the parameters can
be determined by executing the same kind of experi-
ment described above. Nevertheless, the method being
unsupervised, it can be employed when only normal
data is available. In this case, as holds for any other
unsupervised method, it can be difficult to determine
the right value for the parameters.

However, in the case of the CNNDD rule, the fol-
lowing procedure can be profitably applied. As far as
the value of parameter θ is concerned, it can be used
the value θ∗ such that the slope of the curve of the
threshold θ versus the normalized size of the reference
consistent subset ρ = |S|/|D| is equal to a user-provided
value α. As far as the value of parameter k is concerned,
the value k∗ ≥ 1 can be used such that the size of the
reference consistent subset achieved for θ = θ∗ does not
exceed a user-provided ratio ρmax. As can be verified on
the curves in Figure 2, using α ≈ 45◦ and ρmax ≤ 0.2
provides a good classifier in almost all the experiments.

Before concluding this section, it is studied how the
condensation ratio and the prediction accuracy achieved
by the CNNDD method vary together with the training
set size. With this aim, a family of synthetically gen-
erated training sets, called Uniform data set in the fol-
lowing, was considered. Each training set of the family
is composed by n points (n ∈ {1K, 10K, 100K, 1000K})
uniformly distributed into the square [0.25, 0.75]2, which
it is assumed to represent the normal class. To measure
the prediction accuracy, 1,000 uniformly distributed ran-
dom points of the unit square were employed. For each
training set and k ∈ {1, 5}, the parameter θ was varied
to obtain different consistent subsets and the prediction
accuracy achieved was measured. Figure 3 shows the
curves of the reference consistent subset relative size ver-
sus the prediction accuracy. It is worth noticing that the
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Fig. 4. Training set consistent subsets of the Uniform data set for various values of the parameters and points
misclassified during prediction.

condensation ratio increases dramatically with increas-
ing training set size, while the quality of the prediction
remains unchanged, and, also, that by increasing the
parameter k (the dotted lines are those for k = 5) the
accuracy of the classifier is improved.
Figure 4 shows some examples of training set con-

sistent subsets computed by the CNNDD algorithm
on the Uniform data set composed of n = 1,000K
points, together with the misclassified points of the test
set. For clarity, the training set points are not shown
in the figure. The dashed curve represents the square
[0.25, 0.75]2 partitioning the points of the unit square into
two classes. The small crosses represent the consistent
subset points, while the dots are the test points. Circles
are the test points misclassified by the consistent subset.
From left to right and from top to bottom the sizes of the
consistent subset are 23, 78, 792, 16, 144, and 795, while
the prediction accuracies are 0.844, 0.937, 0.977, 0.876,
0.964, and 0.991. It is clear that by decreasing the value of
θ the number of points composing the consistent subset
increases, while the prediction accuracy is improved.

5.2 Comparison with other approaches

In this section, the CNNDD rule is compared with
the NN-d [25], k-center [28], and one-class SVM [22]
classifiers. These methods are described first.
The one-class classifier NN-d accepts a test object

when its local density is larger or equal to the local
density of its kth nearest neighbor. The local density
of an object is estimated by computing the distance
between the object and its kth nearest neighbor in the

reference set without q. Thus, given a test object p, the
NN-d method accepts p if

d(p, nnk(p,D))

d(nnk(p,D), nnk+1(nnk(p,D), D))
≤ θ

and rejects it otherwise (k = 1 and θ = 1 are usually
employed).
The k-center one-class method covers the dataset with

k balls having equal radii. Ball centers µj are placed on
training objects such that the maximum distance of all
minimum distances between the training objects and the
centers is minimized while all the objects are covered by
some ball, i.e. the following measure is minimized:

ρ = max
pi∈D

[
k

min
j=1

d(pi, µj) ].

The radius ρ defines the boundary of the target class
around the k selected centers.
The one-class SVM algorithm is a specialization, work-

ing in the presence of only positive data, of the standard
two-class SVM algorithm, which, conversely, requires
both positive and negative examples. Basically, the fea-
ture space is transformed via a kernel and then the origin
of the transformed space is treated as the only member
of the negative class. Thereafter, the standard two-class
SVM algorithm is employed. The one-class SVM exploits
the parameter ν ∈ (0, 1] in order to control the trade-off
between the number of training-set examples accepted
and the size of the support vector regularization term.
Specifically parameter ν is both an upper bound on the
fraction of outliers and a lower bound on the fraction
of support vectors. The LibSVM [5] implementation of
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Data set CNNDD NN-d k-center one-class SVM

Checkerboard 0.978 (k = 7) 0.937 (k = 4) 0.917 0.946 (γ = 50.0)

Image segmentation brickface 0.998 (k = 1) 0.983 (k = 10) 0.994 0.870 (γ = 2.00)
Image segmentation sky 1.000 (k = 2) 0.999 (k = 3) 0.998 0.995 (γ = 0.20)
Image segmentation foliage 0.962 (k = 1) 0.928 (k = 3) 0.845 0.891 (γ = 5.00)
Image segmentation cement 0.961 (k = 3) 0.876 (k = 2) 0.855 0.907 (γ = 2.00)
Image segmentation window 0.958 (k = 2) 0.926 (k = 2) 0.859 0.890 (γ = 5.00)
Image segmentation path 0.999 (k = 2) 0.995 (k = 3) 0.997 0.982 (γ = 1.00)
Image segmentation grass 0.997 (k = 2) 0.995 (k = 6) 0.995 0.956 (γ = 0.001)

Ionosphere good 0.959 (k = 10) 0.914 (k = 9) 0.937 0.918 (γ = 0.10)

Iris setosa 1.000 (k = 1) 0.989 (k = 3) 0.980 0.947 (γ = 0.01)
Iris versicolor 0.981 (k = 5) 0.958 (k = 7) 0.963 0.980 (γ = 0.20)
Iris virginica 0.960 (k = 5) 0.926 (k = 4) 0.921 0.937 (γ = 0.10)

Letter recognition A 0.998 (k = 3) 0.980 (k = 4) 0.992 —

Satellite image red soil 0.993 (k = 1) 0.938 (k = 5) 0.983 0.974 (γ = 0.0001)
Satellite image cotton crop 0.985 (k = 5) 0.849 (k = 2) 0.965 0.940 (γ = 0.0001)
Satellite image grey soil 0.974 (k = 5) 0.936 (k = 3) 0.953 0.963 (γ = 0.0002)
Satellite image damp grey soil 0.891 (k = 5) 0.819 (k = 1) 0.806 0.911 (γ = 0.0001)
Satellite image soil with vegetation stubble 0.944 (k = 5) 0.900 (k = 1) 0.848 0.851 (γ = 0.0002)
Satellite image very damp grey soil 0.950 (k = 4) 0.874 (k = 2) 0.889 0.942 (γ = 0.0001)

Shuttle 0.995 (k = 2) 0.995 (k = 3) — —

Vehicle opel 0.961 (k = 5) 0.937 (k = 3) 0.919 0.868 (γ = 2.00)
Vehicle saab 0.751 (k = 5) 0.698 (k = 4) 0.647 0.686 (γ = 5.00)
Vehicle bus 0.935 (k = 2) 0.912 (k = 3) 0.909 0.835 (γ = 3.00)
Vehicle van 0.740 (k = 2) 0.692 (k = 1) 0.719 0.649 (γ = 5.00)

Wine class 1 0.998 (k = 5) 0.993 (k = 7) 0.964 0.949 (γ = 0.20)
Wine class 2 0.916 (k = 5) 0.844 (k = 4) 0.857 0.847 (γ = 0.10)
Wine class 3 0.994 (k = 3) 0.988 (k = 1) 0.975 0.958 (γ = 0.50)

TABLE 1
Comparison of the CNNDD, NN-d, and one-class SVM methods through ROC areas.

the one-class SVM was used in the experiments below
presented.

Before starting the comparison, it is of interest to point
out major differences between k-center and CNNDD,
since, among the methods above described, k-center
is the most similar to the method here introduced. In
particular, three aspects are to be taken into account: the
form of the decision boundary, treatment of outliers, and
algorithmic approaches.

Firstly, the form of the decision boundary of the k-
center and CNNDD methods is different. Indeed, the
accepting region of the k-center is the union of k balls
centered on some data set objects. Conversely, the ac-
cepting region of the CNNDD is the union of at most
(

n
k

)

regions, each associated with k distinct objects of the
condensed set. For example, in a normed linear space,
if the norm r = 1 is employed, it can be shown that
these regions are convex sets “generated” by k elements
of the condensed set. Thus, for k = 2 and r = 1,
the accepting region of CNNDD is the union of hyper-
ellipses. For k > 2, more complex regions, describing
a boundary around the k points, are generated. As a
consequence, the decision boundary of CNNDD may be
more accurate than that of k-center, and this is especially
evident whenever the objects of the target class are close
to the objects of the other classes and/or the boundary
is particularly complex, and also in the presence of noise

or outliers (see below). For example, let an ellipse on the
plane represent the accepting region of the target class.
This region can be described exactly by the CNNDD
with a subset composed of two objects (the focus of the
ellipse), while the number of balls to be used by the k-
center must approach infinity to reach the same level of
detail.

Secondly, the k-center always accepts all the training
set objects, while the CNNDD classifier rejects a fraction
of the training set objects, directly proportional to the
value of k and inversely proportional to the value of θ.
This implies that the k-center is more sensitive to noise
than the CNNDD. As an example, consider a training
set composed of one thousand objects very close to
each other, thus forming a cluster, plus a single outlying
object far from the cluster. While the CNNDD method
with k = 2 and a value of θ smaller than the distance
separating the cluster from the outlier, covers the cluster
with a hyper-elliptical region and leaves the outlier out
of its accepting region, the k-center method with k = 2
covers the objects with two spheres, the first centered
on the cluster and the second centered on the outlier.
The neighborhood of the outlier being included in the
accepting region of the k-center classifier, it is clear that it
may degrade prediction accuracy, especially if it falls into
the support of a different class. Furthermore, it follows
from what is stated above that CNNDD can be used to
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Fig. 5. Pairwise comparison of the ROC areas of the CNNDD, NN-d, k-center, and one-class SVM methods.

detect outliers in the input data set, while it is not the
case of k-center.

Finally, even disregarding these basic differences be-
tween the two methods, it is clear that, since the k-
center fixes the number k of centers in advance whereas
the CNNDD fixes the threshold θ used to define the
boundary around the subset objects, different algorith-
mic approaches are feasible to solve the two problems
efficiently.

Comparison of the methods was made through ROC
analysis. ROC curves are the plot of the false positive
rate versus the detection rate, and the area under the
curve gives an estimate of the ability of the method to
separate inliers from outliers. ROC curves are computed
by 10-fold cross-validation.

As far as the CNNDD and NN-d methods are con-
cerned, parameter k was varied between 1 and 10, and,
for each value of k, the parameter θ was varied between
0 and θmax. As for the k-center method, the number k of
centers was varied between 1 and the 90% of the training
set objects. As regards the one-class SVM, parameter
ν was varied between a value close to zero and 1.0,
where n denotes the number of training set objects, and
the RBF kernel was used, varying parameter γ between
10−4 and 102. For each method, the best area under
the ROC curves computed as described above was then
determined.

Table 1 shows the ROC areas of the three methods
(together with the values for the parameters used to
achieve that area). Interestingly, on all the data sets
considered, the CNNDD rule performed better than all

the other three methods.

As far as the one-class SVM method is concerned,
in various experiments it was observed that, while for
relatively small values of parameter γ, the ROC curve is
not as good as the curve of the CNNDD method, instead
for relatively large values of γ they are comparable. Nev-
ertheless, often the curve of the one-class SVM method
is not defined for small values of false positive rate (up
to 5-10%) and, hence, it is less accurate and eventually
it scores a smaller ROC area.

As far as the NN-d method is concerned, its curve is
always below the curve of the CNNDD method, and,
as a result it scores a smaller ROC area. Furthermore, it
must be pointed out that the NN-d rule uses all the data
set objects as reference set.

A similar behavior was observed also for the k-center
method. Basic differences between k-center and CNNDD
were previously discussed.

Table 1 does not show the ROC areas of the one-class
SVM on the Letter recognition A and Shuttle data sets, and
of the k-center on the Shuttle data set, since computing
them required too much computational effort.

The results presented in Table 1 are summarized in
Figure 5, where a pairwise comparison of the four
methods is accomplished. Each point (x, y) represents
a distinct experiment, and it is such that x is the ROC
area of the method on the abscissa, and y is the ROC
area of the method on the ordinate. If the two methods
are comparable, then the points will be symmetrically
distributed along the dashed line connecting (0, 0) to
(1, 1) and partitioning the unit square in two regions.
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Fig. 6. Comparison of the CNNDD, NN-d, k-center, and one-class SVM methods: ROC curves and percentage of
objects composing the model.

Otherwise, the points will lie mostly in one of the two
above-defined regions. It is clear from these diagrams,
that the CNNDD rule outperformed the other three
methods in the experiments considered, while the NN-d,
the k-center, and one-class SVM appear to be comparable
on these experiments.
Figure 6 compares the ROC curves of the CNNDD

(solid line), NN-d (dotted line), k-center (dash-dotted
line), and one-class SVM (dashed lines) algorithms, and
the compression ratios achieved by the CNNDD (solid
pointed line), the k-center (dash-dotted pointed line),
and one-class SVM (dashed pointed line).
These curves confirm the behavior described above.

Indeed, the ROC curves of the NN-d and k-center meth-
ods were always below the ROC curve of the CNNDD
method. As far as the one-class SVM, it is needed to
increase the value of parameter γ of the RBF kernel
in order to achieve a curve comparable to that of the
CNNDDmethod. But, as parameter γ increased, we were
not able to obtain a curve defined for all the values of
false positive rate, in that the curve became undefined
up to 5-10% of false positive rate. This is undesirable
behavior, since usually this is just the range of values
for the false positive rate one is interested in achieving
after parameter tuning as a result of the training phase.
As far as the compression ratios are concerned, as ex-

pected the percentage of support vectors of the one-class
SVM is approximatively equal to the false positive rate.
It can be noticed that the number of objects composing
the CNNDD reference subset was always greater than
the number of support vectors. We were not able to
realize whether this behavior is an intrinsic property of
the minimum size NNDD reference consistent subset, or,
otherwise, if it is due to the fact that the CNNDD rule is
a greedy method computing an approximate solution,
i.e. a reference consistent subset which is, in general,
not minimum (recall that the problem of computing
the minimum one is intractable). In any case, for low
values of the false positive rate, the size of the reference
consistent subset returned by the CNNDD method is
slightly greater than the number of support vectors. Fur-
thermore, it must be noticed that the lower compression

ratio of the CNNDD is repaid by an ROC curve which
is much more accurate. As for the compression ratio of
the k-center method, it is clear that in order to obtain a
good false positive/detection rate trade-off the number k
of data objects to be employed as centers of the classifier
is high, at least the 80% in the experiments reported in
Figure 6.
Finally, Figure 7 shows the scaling behavior of the

CNNDD algorithm and of the learning phase of the
one-class SVM4. Execution times are those reported by
the LibSVM implementation of the one-class SVM. We
considered the Satellite image and Shuttle data sets since
they are the largest data sets among those employed in
the experiments.
As regards the one-class SVM, the curves reported are

obtained by fixing the parameter ν to 0.1. As regards the
CNNDD method, the value of θ is such that the CNNDD
rule scores 0.1 false positive rate.
As for the Satellite image data set, the value of γ is that

associated with the best detection rate achieved by the
one-class SVM, while the value of k is that associated to
the best detection rate achieved by the CNNDD rule.
As for the Shuttle data set, the curve for k = 2 of

the CNNDD method (those associated with its best ROC
area) is compared with the curve for γ = 0.01 of the one-
class SVM, and also the curve for k = 10 of the former
method with the curve for γ = 0.1 of the latter method.
It can be observed that, while the CNNDD algorithm

seems to scale nearly linearly, training the one-class SVM
is costly. Indeed, on the whole data set, the latter method
can be one or two orders of magnitude slower than the
former, while, owing to the different trend of the two
curves, the ratio between the execution times of the two
methods is even expected to increase if larger data sets
are to be considered.
For example, on the Shuttle data set, composed of

34,108 objects having 9 features each, the one-class SVM
with parameters ν = 0.1 and γ = 0.01 required about
170 seconds versus the nine seconds of the CNNDD

4. Experiments were performed on a Pentium Mobile 1700MHz
based machine having 1GB of main memory and the Windows XP
operating system.
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Fig. 7. Comparison of the execution times of the CNNDD
and of the one-class SVM.

rule with parameters k = 2 and θ = 10 (f.p.= 0.1).
Furthermore, on the same data set the one-class SVM
for ν = 0.1 and γ = 0.1 required about 2,000 seconds
versus the ten seconds of the CNNDD rule for k = 10
and θ = 80 (f.p.= 0.1).

5.3 Sensitivity to the norm and robustness to noise

In this section two important aspects of the CNNDD
method are investigated, that is the effect of Minkowski’s
metric r used to compute the norm of the k nearest
neighbors distances vector, and the robustness of the
method to noise or outliers possibly belonging to the
reference set.
First of all, the effect of norm r is considered. In order

to measure the sensitivity of CNNDD to this parameter,
r was varied in the range [0.5, 5] ∪ {+∞}, and both the
area under the ROC curve, and the area under the curve
of the false positive ratio versus the condensation ratio,
say τ this area, were measured. Results concerning the
Checkerboard, Ionosphere, and Image segmentation path data
sets, are shown in Figure 8 (k = 5 was used in all the
experiments). The solid curve represents the area under
the ROC curve, while the dashed curve represents the
ratio τ/τmax, where τmax denotes the greatest value of τ
encountered.
As for the accuracy, while for the Ionosphere and for

the Image segmentation path it remained practically un-
changed, for the Checkerboard data set, by augmenting the
value of r the accuracy gradually and slightly worsened.
Thus, the accuracy of CNNDD appears to have low
sensitivity to the choice of norm r. However, it must be
noticed that for small values of r (r ≤ 1) the accepting
region of CNNDD follows the distribution of the refer-
ence set points more closely than for greater values of
r. Since the two classes composing the Checkerboard data
set are very close and the boundary is quite complex (it
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Fig. 8. Sensitivity to the Minkowski’s metric r.

is the union of some axis parallel segments) this explains
why for low values of r the method performed slightly
well. The same behavior has not been observed in the
other experiments since the classes are better separated.

As for the condensation ratio τ , for all the data sets,
it remained almost constant for r < +∞ (τ/τmax is
approximatively 0.85-0.9), while for r = +∞ it reached
its maximum value τmax. Thus, it can be concluded
that by using the infinity metrics the condensation ratio
worsen. This behavior can be explained by noticing that,
from the data reduction point of view, this norm is more
demanding than the other norms. Indeed, under the
r = +∞ metrics, an object can be discarded from the
reference set only if at least k objects lie within distance
θ from it, while for any other metrics r, the same object
can be discarded provided that there exists k objects
such that the sum

∑

i(di)
r of their distances di from

it is less that θ1/r. It is evident that the former is a
more severe condition than the latter. The value τ/τmax

is a short summary of the condensation achieved, but it
does not represent a real ratio between sizes of reference
consistent subsets (recall that it is an area). In order to
visualize this ratio, Figure 8, on the right, reports, for
r = 1 and r = +∞, the ROC curves (solid r = 1, dashed
r = +∞), and the curves of τ (dotted r = 1, dash-dotted
r = +∞), obtained on the Ionosphere data set. While the
ROC curves are very close, depending on the level of
false positive rate, the ratio between the sizes of the
consistent subsets may change noticeably. For example,
for values of false positive rate around 0.1 the size of the
subset doubles if infinity metrics is employed. A similar
behavior was observed also on the other data sets. It can
be concluded that the value r = 1, used in the rest of the
paper, is in general a good choice for this parameter.

In order to study the robustness of the CNNDD
method to noise, two experiments were executed.

First of all, the Uniform data set (10K two-dimensional
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Fig. 9. Robustness to noise.

points) previously described was considered as training
set. An inlier and an outlier test sets were generated to
measure false positive rate and detection rate. The inlier
data set is composed of 10K two-dimensional points
into the square A = [0.25, 0.75]2. The outlier data set is
composed of 10K points into the region B = [0, 1]2 −A.
Then noisy versions of the Uniform training set were
obtained by adding from the 1% (100 points) to the 10%
(1,000 points) of white-like noise (randomly generated
points belonging to B). For values of k ranging from
1 to 5, the ROC curves associated to the training sets
with noise were computed. Figure 9 reports on the
top these curves. On the top left there are curves for
k = 1, while on the top center curves for k = 5. It is
clear that by adding noise the accuracy of the CNNDD
decreases, though even adding considerable amount of
noise the rule produces a good classifier. Importantly,
as the figure on the top right shows (relative to 10% of
noise), by increasing the value of k the effect of the noise
is mitigated and the resulting classifier is of remarkable
quality.

An analogous experiment was executed on the Shuttle
data set. The 34,108 points of the Rad Flow class were
equally partitioned in a training set and in an inlier test
set (of 17,054 points each), while the 9,392 points of the
other classes formed and outlier test set. Then noisy
versions of the training set were obtained by adding
from 1% (170 points) to 5% (850 points) of mislabelled
points (randomly selected points belonging to the outlier
test set). Also in this case, for values of k ranging from
1 to 10, the ROC curve associated with the training sets
with outliers were computed (reported in Figure 9 on the
bottom). On the bottom left there are curves for k = 1,

on the bottom center curves for k = 10, while on the
bottom right curves relative to 1% of noise. By observing
these curves it is clear that the behavior of the method is
unchanged even if “biased” noise is added. Furthermore,
recall that in this second experiment the noisy points
added are points belonging to the outlier test set, rather
than points coming from the whole feature space.
It can be concluded that increasing the parameter k has

the positive outcome of mitigating the impact of possibly
noise and outliers, thus noticeable improving classifier
accuracy. Indeed, as previously noted, by increasing k,
the objects lying in the less densely populated regions of
the feature space are rejected and no longer contribute
to form the accepting region of the classifier.

6 CONCLUSIONS

In this paper the behavior of one-class classification
based on a nearest neighbor training set consistent subset
has been investigated. With this aim, the concept of
reference consistent subset has been introduced, and the
computational complexity of its computation has been
investigated. A fast greedy algorithm, named CNNDD,
was described that computes a reference consistent sub-
set with only two reference set passes. Comprehensive
experimental activity revealed strengths and weaknesses
of the method.
As a future work, several extensions of the research

done here are worthy of being examined, such as, for
example, methods for computing subsets of a size close
to the minimum one, the investigation of different defi-
nitions of subsets that may improve generalization, the
application of the technique of condensation to other
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nearest neighbor-based one-class classification methods,
and exploring the power of feature selection in conjunc-
tion with training set condensation.
Acknowledgements. The author would like to thank the
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